Читаем Вселенная в зеркале заднего вида полностью

Плотность вакуума, которая получается из теоретических расчетов, катастрофически велика. Если взять и посчитать ее, выйдет число примерно в 10120 раз больше, чем наблюдаемая во вселенной плотность темной энергии. Если вам интересно, откуда берется такое число, имейте в виду, что плотность вакуума — это отношение одной планковской массы к кубу планковской длины.

Проблема темной энергии куда болезненнее, чем кажется на первый взгляд, поскольку мы даже не знаем, в какой области физики искать решение. Очень может быть, что мы не вполне верно интерпретируем стандартную модель. А может статься, темная энергия заложена в законы гравитации — в эйнштейновскую космологическую постоянную. Если дело в этом, нам либо придется смириться с тем, что темная энергия просто есть, либо мы так и не сможем найти к ней подход, пока не построим рабочую теорию квантовой гравитации.

Напрашивается вывод, что мы просто не представляем себе, что такое темная вселенная. Мы можем количественно оценить ее, что, конечно, уже хорошо, однако о ее сущности ничего особенного сказать не можем.

Сколько можно?! Вернемся к нарушению симметрии!

Довольно нытья. Мы уже так давно отклонились от темы симметрии, что стыдно жаловаться, как много мы не знаем. Вы раскошелились на книжку не ради извинений, а ради объяснений.

Если взглянуть на все чуточку шире, мы обнаружим, что на самом деле перед нами не несовершенные симметрии, а совершенный в своем несовершенстве персидский ковер. А что если было такое время в истории вселенной, когда эти симметрии были совершенны, а потом что-то случилось — например, не так легли карты квантовой механики — и равновесие нарушилось[110]? Иначе говоря, нарушилась симметрия?

Нарушение симметрии уже встречалось нам пару раз, однако поскольку мы думаем о мозголомном мире внутренних симметрий и о физике частиц, не помешает освежить в памяти, о чем, собственно, речь.

Предположим, вы обследуете ледяную планету Хот. Куда бы вы ни направились, жизнь повсюду более или менее одинакова — стоит трескучий мороз. Это потому, что планета находится в центре пространства. Она обладает идеальной сферической симметрией. Жизнь одинакова, куда бы вы ни пошли, и хотя, если вам так уж приспичило рисовать карту, вы вольны выбирать хоть Северный полюс, хоть экватор, без дополнительных ориентиров вроде звезд или каких-то ландшафтных примет подобные направления более или менее лишены смысла.

А вот если запустить Хот по орбите вокруг Солнца, все тут же изменится. Например, экватор сразу становится местом особенным — и там будет жарче среднего, совсем как на Земле. Климат будет сильно меняться в зависимости от широты.

Подобное нарушение симметрии сильно влияет на взаимодействие людей на Земле. Географ и физиолог Джаред Даймонд в своей книге «Ружья, микробы и сталь» доказывает, что технический прогресс, развитие сельского хозяйства и распространение заболеваний происходило по линиям тех или иных широт и что ориентация Евразии с запада на восток обеспечила ее жителям технологические и иммунологические преимущества по сравнению с обитателями обеих Америк.

Мы всего-навсего создали взаимодействие — и мгновенно перешли от двумерной симметрии, где планета повсюду примерно одинакова, к одномерной симметрии, где жизнь одинакова только на одинаковых широтах. Однако, в отличие от Хота, где симметрии нарушаются, если добавить источник тепла, нарушение симметрии почти всегда происходит, наоборот, при остывании системы.

Возьмем, к примеру, железо. Наверное, вы знакомы с железом благодаря его способности удерживать рисунки ваших детишек на дверце холодильника. Вращение каждого атома железа формирует миниатюрный магнит. Это свойство присуще многим веществам, однако железо занимает особое место, поскольку для его атомов оказывается энергетически выгодно выстраиваться в структуры, и при этом атомы железа сообща создают довольно мощное магнитное поле.

С другой стороны, уничтожить железный магнит очень просто, достаточно лишь разогреть его до температуры выше 1043 К — она называется температурой Кюри (в честь Пьера Кюри). Это все равно что положить все атомы железа в блендер и нарушить всякий порядок ориентации, только средствами термодинамики. Вначале налицо была явная асимметрия — у магнита есть северный и южный полюс, — однако симметрию удалось восстановить простым нагревом.


Как остывает железо


По мере остывания железного бруска, при условии, что остывает он достаточно медленно, атомы снова ориентируются параллельно друг другу — и кусок железа снова превращается в большой магнит. В каком направлении они встанут, никто не знает. Разумеется, можно нарушить симметрию и вручную, если просто поместить железо во внешнее магнитное поле, и тогда все атомы выстроятся именно так, как требуется.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги