Ньютон и его последователи приняли эти принципы инвариантности во многом как данность и использовали их как безусловное основание для своих теорий, поэтому ситуация, когда эти принципы сами по себе стали предметом для серьезных научных исследований, оказалась довольно болезненной. Суть СТО, предложенной Эйнштейном в 1905 г., состояла в уточнении принципа относительности Галилея. Ее разработка была мотивирована отчасти неудачными попытками физиков обнаружить какое-либо влияние движения Земли на измеряемую скорость света, подобное влиянию движения лодки на наблюдаемую скорость волн на поверхности воды. В СТО, как и в ньютоновской механике, помещение наблюдателя в движущуюся с постоянной скоростью лабораторию не изменяет форму наблюдаемых физических законов, однако влияние движения на измеряемые расстояния и временны́е интервалы, описываемое СТО, отличается от представлений Ньютона. Движение приводит к сокращению длины и замедлению времени так, чтобы скорость света оставалась постоянной независимо от скорости движения наблюдателя. Эта новая симметрия, названная
Появление СТО и ее успех дали физикам XX в. сигнал о важности принципов симметрии. Однако сами по себе симметрии пространства и времени, встроенные в СТО, не позволят нам продвинуться слишком далеко. Можно представить огромное множество теорий частиц и сил, согласующихся с указанными пространственно-временными симметриями. К счастью, уже в 1950-х гг. было ясно, что физические законы, какими бы они не были, отвечают симметриям всех других типов, как и пространственно-временным.
Еще с 1930-х гг. было известно, что неоткрытые законы сильного ядерного взаимодействия учитывают симметрию протонов и нейтронов — двух частиц, из которых состоит атомное ядро. Это означает, что уравнения, описывающие сильное взаимодействие, не изменяются не только при замене протонов на нейтроны и нейтронов на протоны. Форма уравнений сохраняется даже при замене протонов и нейтронов на частицы, соответствующие суперпозиции этих двух: например, каждый протон в уравнениях можно заменить на частицу, которая, скажем, с 60 %-ной вероятностью может оказаться протоном, а с 40 %-ной — нейтроном, а каждый нейтрон можно заменить частицей, которая с 40 %-ной вероятностью — протон, и с 60 %-ной — нейтрон. Вследствие этой симметрии сила, действующая между двумя протонами, равна не только силе между двумя нейтронами, она также равна силе, действующей между протоном и нейтроном. (Эта группа инвариантности математически тождественна группе движений сферы.)
Позже, в 1960-х гг., когда новых типов частиц, открытых учеными, становилось все больше, выяснилось, что описанная протон-нейтронная симметрия является частью еще большей группы симметрии, которую назвали «
Однако в существовании таких внутренних симметрий было нечто странное: в отличие от симметрий в пространстве и времени, эти новые симметрии были не совсем точными. Электромагнитные явления не согласуются с этими симметриями; протоны и некоторые гипероны имеют электрический заряд, тогда как нейтроны и другие гипероны — нет. Кроме того, массы протонов и нейтронов отличаются примерно на 0,14 %, а масса самого легкого гиперона отличается от массы протонов и нейтронов на 19 %. Если законы симметрии являют собой простоту природы на глубинном уровне, как быть с симметрией, которая применима только к некоторым силам, да и то приближенно?
В 1956–1957 гг. было сделано еще более загадочное открытие о свойствах симметрии. Принцип зеркальной симметрии утверждает, что физические законы природы не изменятся, если мы будем наблюдать за природой в зеркало, которое обращает отрезки, перпендикулярные к поверхности зеркала (то есть нечто, расположенное далеко позади вашей головы, в зеркале выглядит так, как будто оно расположено далеко позади вашего отражения, а значит, далеко впереди вас). Эта трансформация не является поворотом — не существует способа так повернуть систему отсчета, чтобы эффект обращения расстояний наблюдался только в направлении, перпендикулярном к плоскости зеркала. Обычно точность и универсальность зеркальной симметрии, как и других симметрий в пространстве-времени, принимается как данность, но эксперименты, проведенные в 1957 г., убедительно продемонстрировали, что слабое ядерное взаимодействие не симметрично относительно отражений, тогда как электромагнитное и сильное ядерное взаимодействия подчиняются этому закону. Оказалось, что такое же нарушение симметрии наблюдается между частицами и их античастицами.