Исключение из этой теоремы было найдено в 1964 г. независимо тремя группами ученых. Этими учеными были Роберт Браут и Франсуа Энглер; Джералд Гуральник, Ричард Хаген и Томас Киббл; и Питер Хиггс (Brout, Englert, Guralnik, Hagen, Kibble, Higgs — BEGHKH). Они указали, что теорема Голдстоуна не применима к определенному классу симметрий, которые называются локальными. Для этого типа симметрий преобразования, сохраняющие неизменными физические законы, могут изменяться от точки к точке в пространстве и времени. Для сохранения формы уравнений неизменной при таких преобразованиях теории с ненарушенными локальными симметриями должны содержать частицы с нулевой массой и некоторым конечным значением спина, равным постоянной Планка. Частица света фотон — одна из таких безмассовых частиц с конечным спином. Десятью годами ранее Янг Чжэньнин и Роберт Миллс описали огромный класс возможных новых локальных симметрий сильного взаимодействия, однако эти теории Янга — Миллса на тот момент не нашли какого-либо применения в реалистичных физических теориях. BEGHKH показали, что при нарушении локальной симметрии безмассовые частицы, открытые Голдстоуном и его коллегами, нужно понимать не как физические частицы, а как нечто, что придает массу частицам, которые иначе были бы безмассовыми частицами Янга — Миллса с конечным спином.
В статьях BEGHKH не предлагалось каких-то конкретных реалистичных теорий частиц и взаимодействий. В 1967 г. я без особого успеха пытался разработать теорию сильного ядерного взаимодействия на основе нарушенной локальной симметрии. В какой-то момент я осознал, что пытался применить хорошие идеи не в том месте. Верным применением было слабое ядерное взаимодействие, которое позволяет протону в радиоактивном ядре превращаться в нейтрон и наоборот. Оказалось, что итоговая теория описывает не только слабое ядерное, но и электромагнитное взаимодействие. Конечно, это было очень захватывающе. Чуть позже во многом аналогичная теория была независимо разработана Саламом. Кроме того, я выяснил, что Шелдон Ли Глэшоу, Салам и Джон Уорд исследовали теорию этого типа, только без включения в нее нарушенной симметрии или бозона Хиггса.
В моей теории и теории Салама существует локальная электрослабая симметрия, при нарушении которой возникает требование нулевой массы для электронов, кварков и частиц, которые переносят слабое взаимодействие. В исходной версии этой теории имеется также квартет безспиновых полей, которые принимают нулевые значения в вакууме при условии, что симметрия не нарушена. (Поля этого общего типа уже появлялись в пояснительных примерах нарушения локальной симметрии, представленных BEGHKH.) Электрослабая симметрия нарушается вследствие появления ненулевого значения для одного из этих четырех безспиновых полей, и в результате взаимодействия с этими полями электроны, кварки и частицы, переносящие слабое ядерное взаимодействие, приобретают массу. В этой теории только одно из четырех безспиновых полей рассматривается как физическая частица — электрически нейтральная безспиновая частица, взаимодействие которой описывается теорией, но масса которой, к сожалению, не известна. Эта частица — бозон Хиггса, поиском которого занят CERN.
К настоящему времени имеется множество экспериментальных подтверждений тому, что нарушенная локальная электрослабая симметрия действительно существует. Новые слабые взаимодействия, обязательные в рамках теории, были обнаружены в экспериментах CERN в 1973 г., а в 1984 г. также в CERN были открыты массивные частицы, которые переносят слабое ядерное взаимодействие, и в обоих случаях свойства взаимодействий и частиц были предсказаны нарушенной симметрией. Не до конца пока ясно, нарушается ли электрослабая симметрия именно так, как это описали Салам и я.
Существуют и другие варианты. Симметрия может быть нарушена из-за нескольких квартетов безспиновых полей, и в этом случае должно существовать несколько бозонов Хиггса со сложными свойствами. Еще более радикальный вариант был предложен независимо Леонардом Сасскиндом и мной: уравнения теории могут вообще не содержать безспиновых полей. Наоборот, в дополнение к известным электрослабому и сильному ядерному взаимодействиям может существовать еще более сильное техницветовое взаимодействие, которое переносится частицами, взаимодействующими с частицами, переносящими слабое взаимодействие, и таким образом нарушается электрослабая симметрия. В теории такого типа вместо бозона Хиггса должен появиться целый «зоопарк» новых частиц, удерживаемых вместе техницветовым взаимодействием. Так или иначе эксперименты на Большом адронном коллайдере дадут ответ на важный нерешенный вопрос о том, что является причиной нарушения электрослабой симметрии и придает элементарным частицам их массы.