Не менее важно, что на БАК могут быть открыты еще более восхитительные вещи. К настоящему моменту астрономы нашли несколько независимых свидетельств, доказывающих, что примерно 5/6 всей массы Вселенной принадлежат некоторой экзотической темной материи, которая служит основным источником гравитации в галактиках и скоплениях галактик, но при этом слабо взаимодействует, если вообще взаимодействует, с обычной материей. Ни одна из частиц, входящих в современную Стандартную модель элементарных частиц (в том числе электрослабое и сильное ядерное взаимодействия), не обладает нужными свойствами, чтобы ее можно было считать частицей темной материи. Многие теоретики предлагают различные возможные обобщения Стандартной модели и кандидатов на роль частиц, из которых состоит темная материя.
Среди наиболее вероятных из этих кандидатов можно назвать вимпы — слабо взаимодействующие массивные частицы. Это частицы, которые по отдельности устойчивы или, по крайней мере, могут существовать в течение миллиардов лет, но при этом в парах они аннигилируют и их энергия превращается в обычные частицы. Идея состоит в том, что в условиях горячего плотного состояния ранней Вселенной эти частицы должны были непрерывно создаваться и аннигилировать в парах до тех пор, пока расширение Вселенной не разредило их настолько, что они перестали сталкиваться друг с другом. Мы могли бы рассчитать, сколько таких частиц могло бы просуществовать до нашего времени, если бы знали их массу и насколько легко они аннигилируют. Или, по-другому, если мы допустим, что из этих вимпов состоит темная материя, и сделаем разумное предположение о том, как они аннигилируют, тогда мы сможем рассчитать их массу. Так называемое вимп-чудо состоит в том, что значение массы этих частиц должно лежать в диапазоне от 10 до 100 масс протона, то есть в том диапазоне масс, частицы из которого могут быть получены на БАК. Так что эксперименты CERN могут рассказать нам, из чего сделана большая часть Вселенной.
13. Почему бозон Хиггса?
После объявления в 2012 г. об открытии бозона Хиггса меня попросили объяснить на страницах газеты
В тексте я намеренно оставил открытым вопрос, действительно ли новая частица, обнаруженная в опытах CERN, является тем самым «бозоном Хиггса», существование которого было предсказано в 1967–1968 гг. теорией слабого и электромагнитного взаимодействий. Сегодня, после пяти лет продолжающихся экспериментов и исследований, в этом нет никаких сомнений. Измеренные значения скорости образования и скоростей различных вариантов распада согласуются с этой теорией.
Сообщение от 4 июля 2012 г. о том, что в лаборатории CERN в Женеве был получен «бозон Хиггса», стало мировой новостью. На следующий день
Почему столько шума? Время от времени в физике элементарных частиц происходили новые открытия, которые не привлекали столько внимания. Многие считают, что эта частица является важнейшим ключом к пониманию того, как все остальные элементарные частицы приобретают свои массы. Это верно, но нужно немного пояснить.
У нас есть хорошо проверенная теория элементарных частиц и взаимодействий между ними, известная как Стандартная модель. Центральной особенностью Стандартной модели является симметрия между двумя из описываемых ею типов взаимодействий — между электромагнитным и не столь широко известным слабым ядерным взаимодействием, которое обеспечивает первый этап в цепочке реакций, дающих Солнцу его энергию. Симметрия означает, что частицы, переносящие это взаимодействие, фигурируют в уравнениях теории совершенно одинаково. Можно заменить частицу света фотон, переносящую электромагнитное взаимодействие, на некоторую комбинацию W- и Z-частиц, которые переносят слабое взаимодействие, и уравнения сохранят свою форму.
Если бы не было факторов, нарушающих эту симметрию, тогда W- и Z-частицы, как и фотон, не имели бы массы. В действительности же все другие элементарные частицы также были бы безмассовыми по причинам, в детали которых я не могу здесь вдаваться. Однако, конечно, большинство элементарных частиц имеют массу. Например, в отличие от безмассового фотона, W- и Z-частицы почти в 100 раз тяжелее атома водорода.