Читаем Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества полностью

В лаборатории Конти Йинек заинтересовался главной звездой этой книги – молекулой РНК. “Это удивительно разноплановая молекула – она может выступать катализатором, может складываться в 3D-структуры, – сказал он впоследствии Кевину Дэвису из CRISPR Journal. – В то же время она переносит информацию. Это универсал в мире биомолекул!”[81] Он хотел работать в лаборатории, где сможет изучить структуру комплексов, в которых сочетались РНК и ферменты[82].

Йинек прекрасно умел ставить себе задачи. “Он мог работать самостоятельно, а это всегда ценилось в моей лаборатории, поскольку я не руковожу каждым шагом сотрудников, – говорит Даудна. – Я предпочитаю нанимать людей, которые имеют собственные творческие идеи и хотят работать в команде под моим руководством, но при этом не ждут от меня ежедневных указаний”. Она назначила встречу с Йинеком, когда поехала на конференцию в Гейдельберг, а затем пригласила его в Беркли, где он познакомился с сотрудниками ее лаборатории. Она считала, что членам команды очень важно чувствовать себя свободно в общении с новыми коллегами.

Когда Йинек перешел в лабораторию Даудны, он сначала сосредоточился на изучении механизмов РНК-интерференции. Ученые уже описали, как проходит этот процесс в живых клетках, но Йинек понимал, что для полноты картины необходимо воссоздать процесс в пробирке. Эксперименты in vitro позволили ему выделить ферменты, которые играют важнейшую роль при воздействии на экспрессию гена. Он также смог изучить кристаллическую структуру одного конкретного фермента и тем самым показать, как именно он разрезает матричную РНК[83].

Йинек и Виденхефт имели совершенно разную подготовку и были совсем непохожи друг на друга по характеру, но прекрасно дополняли друг друга. Йинек специализировался на кристаллографии и хотел поработать с живыми клетками, а Виденхефт занимался микробиологией и хотел изучить кристаллографию. Они сразу понравились друг другу. Виденхефт отличался гораздо более озорным чувством юмора, но оно было таким заразительным, что вскоре Йинек его подхватил. Однажды, приехав вместе с коллегами с визитом в Аргоннскую национальную лабораторию в Чикаго, они работали в огромном круглом здании, где находится мощный источник синхротронного излучения Advanced Photon Source, или APS. Здание так велико, что ученые передвигаются по нему на трехколесных велосипедах. В четыре утра, проработав всю ночь, Виденхефт устроил гонку на велосипедах по всей окружности здания и, конечно, победил[84].

Даудна решила, что ее лаборатория поставит перед собой цель разделить систему CRISPR на химические составляющие и изучить, как работает каждая из них. Первым делом они с Виденхефтом предпочли сосредоточиться на CRISPR-ассоциированных ферментах.

Cas1

Давайте прервемся на краткий ликбез.

Ферменты – это белки особого типа. Их главная функция – выступать в качестве катализатора, запускающего химические реакции в клетках живых организмов, от бактерий до человека. Ферменты катализируют более пяти тысяч биохимических реакций. Благодаря им расщепляются белки и углеводы в пищеварительной системе, сокращаются мышцы, передаются сигналы между клетками, регулируется обмен веществ и (что особенно важно для нашей темы) происходит разрезание и сплайсинг ДНК и РНК.

К 2008 году ученые открыли ряд ферментов, производимых генами, которые соседствуют с последовательностями CRISPR в ДНК бактерий. Эти CRISPR-ассоциированные ферменты (ферменты Cas) позволяют системе вырезать и вставлять в геном новые воспоминания о вирусах, атакующих бактерии. Они также создают короткие сегменты РНК, называемые CRISPR-РНК (сгРНК), которые направляют работающий по принципу ножниц фермент к опасному вирусу, чтобы вырезать его генетический материал. Вуаля! Так хитроумные бактерии и создают адаптивную иммунную систему!

Система обозначений этих ферментов в 2009 году еще не сложилась, в основном потому, что их открывали в разных лабораториях. В конце концов названия привели к единому стандарту: Cas1, Cas9, Cas12 и Cas13.

Даудна и Виденхефт решили сосредоточиться на ферменте Cas

1. Это единственный фермент Cas, который встречается во всех бактериях с системами CRISPR, а значит, выполняет фундаментальную функцию. Cas1 обладал и другим преимуществом для лаборатории, где для изучения того, как структура молекулы определяет ее функции, применялась рентгеновская кристаллография: его было просто кристаллизовать[85].

Виденхефт смог выделить ген Cas1 из бактерий и клонировать его. Применив диффузию из паровой фазы, он сумел его кристаллизовать. Но затем он зашел в тупик, пытаясь определить его точную кристаллическую структуру, поскольку его опыт в рентгеновской кристаллографии оказался недостаточным.

Перейти на страницу:

Похожие книги