Читаем XX век. Исповеди полностью

- Не совсем так. Все мы вышли из школы Чебышева, а Учитель всегда подчеркивал, что самая интересная проблема та, которая имеет практическое значение. Математика развивается, работая на весьма конкретные результаты, которые потом обобщаются. Сначала появляется какое-то интересное наблюдение, потом начинает развиваться направление, появляются любопытные результаты, а потом уже могут возникать абстракции…

- Идет поиск красоты решений?

- Красота - одна из движущих сил математики. Красивая формула, красивая теорема значат очень многое. Да и доказательство должно быть красивым, а не каким-то нагромождением вычислений.

- А что значит для вас "красота" ?

- У каждого ученого свое представление о ней. В математике очень много красивых результатов.

- И как вы это видите?

- Надо читать и воспринимать классику! Особенно остро это ощущалось в те времена, когда я учился. Удивительный мир открывался передо мной, и я входил в него! Потом, конечно, это ощущение притупилось, если хотите, оно стало более прагматичным - я понимал, что я что-то сделал хорошее, и тот или иной результат уже можно считать красивым…

- И все-таки как и чем это можно определять?

- Во-первых, краткость и четкость изложения, и во-вторых, реакция коллег, когда рассказываешь им о постановке задачи и результатах. Математическая аудитория всегда очень чутко реагирует на новое и интересное.

- Обычно создается впечатление, что разговор идет на каком-то чужом, внеземном языке?

- Профессионалы судят об этом иначе… Кстати, не только в математике.

- Согласен… Мне кажется, что в последние десять лет вы хотели применить математику и в общественных отношениях. Я имею в виду ситуацию вокруг Академии наук, ту борьбу, что шла в науке, и волею судьбы вы оказались в эпицентре битвы. Разве не так? Вы были одним из создателей Фонда фундаментальных исследований. И это тоже борьба. Так какую же из множества проблем жизни и судьбы Большой науки в России вам удалось "красиво" решить?

- Математик-теоретик в значительной степени один на один с проблемой. Чуть позже он общается со своими учениками, коллегами, и тогда идет дискуссия. Но в основном труд математика индивидуален… Теперь же вы переводите в область организации науки, и я сразу хочу сказать, что тут результаты у меня более чем скромные. Лично мне, честно признаюсь, чего-то большого достичь не удалось, однако пришлось участвовать практически во всех событиях, связанных с Российской академией наук.

- Этим пришлось заниматься в силу характера или по должности?

- Я достаточно активный человек. Меня постоянно привлекали к организационным проблемам - касалось ли это школь-

ного образования или ситуации с присуждением ученых степеней. В нашем математическом мире есть научно-организационные проблемы, так что "чистой науки" не бывает… В 1986-87-х годах мы почувствовали, что математика стала предметом специального обсуждения в ЦК КПСС и Совете Министров СССР, более того -было проведено даже специальное заседание Политбюро…

- Странно, не правда ли?

- Странно с позиций сегодняшнего дня, а тогда высшее руководство страны уделяло особое значение развитию науки, и математики в частности, как основы фундаментальных знаний. Кстати, тогда было принято решение о строительстве нового здания для Института математики, о специальных стипендиях для студентов-математиков, о компьютеризации школ и так далее.

- Что-то конкретное послужило причиной такого внимания ЦК?

- Я тогда был далек от власти, а потому деталей не знаю. Ходили слухи, что толчком послужила ситуация в Америке, где начали уделять математике большое внимание. Возможно, что-то другое… Не знаю, а потому просто фиксирую, что такое было.

- И эта ситуация сказалась на вашей судьбе?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже