Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

Читается это очень весело: так и настраиваешься скользить по числовому морю на парусах арифметической галеры. Но, хотя старинный математик и рекомендует этот способ как "самый изящный, самый легкий, самый верный, самый употребительный и самый общий из существующих, пригодный для деления всех возможных чисел", я не решаюсь его изложить здесь из опасения, что даже терпеливый читатель закроет книгу в этом скучном месте и не станет читать дальше.

Между тем этот утомительный способ действительно был самым лучшим в ту эпоху. У нас он употреблялся до середины XVIII века: в "Арифметике" Леонтия Магницкого[14] он описан в числе шести предлагаемых там способов (из которых ни один не похож на современный) и особенно рекомендуется автором; на протяжении своей объемистой книги — 640 страниц большого формата — Магницкий пользуется исключительно "способом галеры", не употребляя, впрочем, этого наименования.

В заключение покажем читателю эту числовую "галеру", воспользовавшись примером из книги Тартальи:


2 Последние две девятки приписаны к делителю в процессе деления.


МУДРЫЙ ОБЫЧАЙ СТАРИНЫ


Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие— похвальное правило, которому не мешало бы и нам следовать.

Любимым приемом проверки был так называемый "способ девятки". Этот изящный прием нередко описывается и в современных арифметических учебниках, особенно иностранных.

Проверка девяткой основана на "правиле остатков", гласящем: остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число. Точно так же остаток произведения равен произведению остатков множителей. С другой стороны, известно также[15], что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает остаток 2, и то же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба указанных свойства, мы и приходим к приему проверки девяткой, то-есть с делением на 9. Покажем на примере.

Пусть требуется проверить правильность сложения следующего столбца:



Составляем в уме сумму цифр каждого слагаемого, причем в получающихся попутно двузначных числах также складываем цифры (делается это в самом процессе сложения цифр), пока, в конечном результате, не получим однозначного числа. Результаты эти (остатки от деления на 9) записываем, как показано на примере, рядом с соответствующим слагаемым. Складываем все остатки (7 + 7 + 1 + 2 = 17; 1 + 7 = 8), получаем 8. Такова же должна быть сумма цифр итога (5339177), если действие выполнено верно: 5 + 3 + 3 + 9 + 1 + 7 + 7 после всех упрощений равно 8.

Проверка вычитания выполняется точно так же, если принять уменьшаемое за сумму, а вычитаемое и разность — за слагаемые. Например:



Особенно удобен этот прием в применении к проверке действия умножения, как видно из следующего примера:



Если при такой проверке умножения обнаружена будет ошибочность результата, то, чтобы определить, где именно кроется ошибка, можно проверить способом девятки каждое частное произведение отдельно; а если здесь ошибки не окажется, остается проверить лишь сложение частных произведений.

Как по этому способу проверять деление? Если у нас случай деления без остатка, то делимое рассматривается как произведение делителя на частное. В случае же деления с остатком пользуются тем, что делимое = делителю х частное + остаток.

Например:



сумма цифр:

2 х 8 + 3 = 19; 1 + 9 = 10; 1 + 0 = 1.

Привожу из "Арифметики" Магницкого предлагаемое там для проверки девяткой удобное расположение:

Для умножения:



Для деления:



Подобная проверка действий, без сомнения, не оставляет желать лучшей в смысле быстроты и удобства. Нельзя сказать того же о ее надежности: ошибка может и ускользнуть от нее. Действительно, одну и ту же сумму цифр могут иметь разные числа; не только перестановка цифр, но, иной раз, даже и замена одних другими остаются при такой проверке необнаруженными. Укрываются от контроля также лишние девятки и нули, потому что не влияют на сумму цифр. Всецело полагаться поэтому на такой прием проверки было бы неосмотрительно. Предки наши сознавали это и не ограничивались одной лишь проверкой с помощью девятки, но производили еще дополнительную проверку — чаще всего с помощью семерки. Этот прием основан на том же "правиле остатков", но не так удобен, как способ девятки, потому что деление на 7 приходится выполнять полностью, чтобы найти остатки (а при этом легко возможны ошибки в действиях самой проверки).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука