Читаем Занимательная арифметика [Загадки и диковинки в мире чисел] полностью

Две проверки — девяткой и семеркой — являются уже гораздо более надежным контролем: что ускользнет от одной, будет уловлено другой. Ошибка не обнаружится лишь в том случае, если разность истинного и полученного результатов кратная числу 7 х 9 = 63. Так как подобная случайность все же возможна, то и двойная проверка не дает полной уверенности в правильности результата.

Впрочем, для обычных вычислений, где ошибаются чаще всего на одну или две единицы, можно ограничиться только проверкой девяткой. Дополнительная проверка семеркой чересчур обременительна. Только тот контроль хорош, который не мешает работе.

Если тем не менее, выполняя ответственное вычисление, вы пожелаете для надежности произвести двойную проверку, то вместо делителя 7 лучше пользоваться делителем 11. При этом дело можно значительно упростить, применив следующий удобный признак делимости на 11: число разбивают на грани справа налево, по две цифры в каждой (самая левая грань может заключать и одну цифру); грани складывают, и полученная сумма будет "равноостаточна" с испытуемым числом по делителю 11: сумма граней дает при делении на 11 тот же остаток, что и испытуемое число.

Поясним сказанное примером. Требуется найти остаток от деления 24 716 на 11. Разбиваем число на грани и складываем их:

2 + 47 + 16 = 65.

Так как 65 при делении на 11 дает в остатке 10, то и число 24 716 дает при делении на 11 тот же остаток.

Я предлагаю этот способ потому, что он одновременно дает и число, равноостаточное с испытуемым также по делителю 9. Таким образом, мы имеем возможность удобно произвести проверку сразу посредством двух делителей: 9 и 11. От такой проверки может ускользнуть только ошибка, кратная 99, то-есть весьма маловероятная.


ХОРОШО ЛИ МЫ МНОЖИМ?


Старинные способы умножения были неуклюжи и неудобны, но так ли хорош наш нынешний способ, чтобы в нем невозможны были уже никакие дальнейшие улучшения? Нет, и наш способ не является совершенным; можно придумать еще более быстрые или еще более надежные. Из нескольких предложенных улучшений укажем пока только одно, увеличивающее не быстроту выполнения действия, а его надежность. Оно состоит в том, что при многозначном множителе начинают с умножения не на последнюю, а на первую цифру множителя. Выполненное на стр. 44 умножение 8713 х 264 примет при этом такой вид:



Как видим, последнюю цифру каждого частного произведения подписывают под той цифрой множителя, на которую умножают.

Преимущество подобного расположения в том, что цифры частных произведений, от которых зависят первые, наиболее ответственные цифры результата, получаются в начале действия, когда внимание еще не утомлено и, следовательно, вероятность сделать ошибку меньшая. (Кроме того, способ этот упрощает применение так называемого "сокращенного" умножения о котором здесь мы распространяться не можем.)


"РУССКИЙ" СПОСОБ УМНОЖЕНИЯ


Вы не можете выполнить умножение многозначных чисел, хотя бы даже двузначных, если не помните наизусть всех результатов умножения однозначных чисел, то-есть того, что называется таблицей умножения. В старинной "Арифметике" Магницкого, о которой мы уже упоминали, необходимость твердого знания таблицы умножения воспета в таких — чуждых для современного слуха — стихах:

Аще кто не твердит таблицы и гордит,Не может познати числом что множати
И в пользу не будет, аще ю забудет.И во всей науки, несвобод от муки,Колико не учит, туне ся удручит

Автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, не похожий на наши школьные приемы, употребителен в обиходе великорусских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа.

Вот пример:

32 х 13

16 х 26

8 х 52

4 х 104

2 х 208

1 х 416

Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение:

32 х 13 = 1 х 416.

Однако как поступить, если при этом приходится делить пополам число нечетное?

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука