Две проверки — девяткой и семеркой — являются уже гораздо более надежным контролем: что ускользнет от одной, будет уловлено другой. Ошибка не обнаружится лишь в том случае, если разность истинного и полученного результатов кратная числу 7 х 9 = 63. Так как подобная случайность все же возможна, то и двойная проверка не дает полной уверенности в правильности результата.
Впрочем, для обычных вычислений, где ошибаются чаще всего на одну или две единицы, можно ограничиться только проверкой девяткой. Дополнительная проверка семеркой чересчур обременительна. Только тот контроль хорош, который не мешает работе.
Если тем не менее, выполняя ответственное вычисление, вы пожелаете для надежности произвести двойную проверку, то вместо делителя 7 лучше пользоваться делителем 11. При этом дело можно значительно упростить, применив следующий удобный признак делимости на 11: число разбивают на грани справа налево, по две цифры в каждой (самая левая грань может заключать и одну цифру); грани складывают, и полученная сумма будет "равноостаточна" с испытуемым числом по делителю 11: сумма граней дает при делении на 11 тот же остаток, что и испытуемое число.
Поясним сказанное примером. Требуется найти остаток от деления 24 716 на 11. Разбиваем число на грани и складываем их:
2 + 47 + 16 = 65.
Так как 65 при делении на 11 дает в остатке 10, то и число 24 716 дает при делении на 11 тот же остаток.
Я предлагаю этот способ потому, что он одновременно дает и число, равноостаточное с испытуемым также по делителю 9. Таким образом, мы имеем возможность удобно произвести проверку сразу посредством двух делителей: 9 и 11. От такой проверки может ускользнуть только ошибка, кратная 99, то-есть весьма маловероятная.
Старинные способы умножения были неуклюжи и неудобны, но так ли хорош наш нынешний способ, чтобы в нем невозможны были уже никакие дальнейшие улучшения? Нет, и наш способ не является совершенным; можно придумать еще более быстрые или еще более надежные. Из нескольких предложенных улучшений укажем пока только одно, увеличивающее не быстроту выполнения действия, а его надежность. Оно состоит в том, что при многозначном множителе начинают с умножения не на последнюю, а на
Как видим, последнюю цифру каждого частного произведения подписывают под той цифрой множителя, на которую умножают.
Преимущество подобного расположения в том, что цифры частных произведений, от которых зависят первые, наиболее ответственные цифры результата, получаются в
Вы не можете выполнить умножение многозначных чисел, хотя бы даже двузначных, если не помните наизусть всех результатов умножения однозначных чисел, то-есть того, что называется таблицей умножения. В старинной "Арифметике" Магницкого, о которой мы уже упоминали, необходимость твердого знания таблицы умножения воспета в таких — чуждых для современного слуха — стихах:
Автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, не похожий на наши школьные приемы, употребителен в обиходе великорусских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа.
Вот пример:
32 х 13
16 х 26
8 х 52
4 х 104
2 х 208
1 х 416
Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат. Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение:
32 х 13 = 1 х 416.
Однако как поступить, если при этом приходится делить пополам число нечетное?