Читаем Здоровый дом полностью

Таблица 7. Решение задачи Фибоначчи

Каждое число (начиная с третьего) этой последовательности равно сумме двух предыдущих: 2 + 3 = 5;3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21; 13 + 21 = 34 и т. д. Отношение смежных чисел ряда приближается к числу божественной пропорции φ = 0,618 (при делении единичного отрезка в пропорции золотого сечения получившийся больший отрезок равен 0,618, меньший 0,382). Так, 2:3 = 0,666; 3:5 = 0,6; 5:8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619; 21: 34 = 0,617, а 34: 55 = 0,618 и т. д.

Ряд Фибоначчи и иррациональное число φ обладают множеством удивительных свойств. Деление каждого из чисел ряда Фибоначчи на число, стоящее через одно, дает еще один «золотой коэффициент» – 0,382 (равное 1– φ ). Обратное отношение, то есть деление числа на предшествующее ему, приближается к числу 1,618 (равное 1

:φ). Можно и дальше продолжать ряд «золотых коэффициентов» ряда Фибоначчи, которые дают непрерывное деление отрезка прямой в божественной пропорции, когда меньший отрезок так относится к большему, как больший ко всему.

Золотые геометрические фигуры

На золотом сечении базируются основные геометрические фигуры.

Прямоугольник, в котором длины сторон божественно пропорциональны, стали называть золотым прямоугольником. Он обладает множеством интересных свойств.

Если от него отрезать квадрат, то оставшаяся часть представляет собой золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам. Точки, делящие стороны в божественной пропорции, лежат на закручивающейся внутрь логарифмической спирали – единственной спирали, которая не меняет своей формы при изменении размеров (рис. 40а).

а

б

в

Рис. 40. Геометрические фигуры: а — золотой прямоугольник; б — золотой треугольник; в — пентаграмма

Перейти на страницу:

Похожие книги