Читаем Жар холодных числ и пафос бесстрастной логики полностью

Дело в том, что люди, даже при самых простых рассуждениях (неважно, делаются они в уме или «проговариваются»), оперируют целыми вереницами высказываний, большинство из которых имеет сложный характер, создают разветвленные цепи и замкнутые циклы аргументации, не боятся повторений, обрывают тупиковые ветви аргументации, приводят рассуждение к абсурду или очевидности, после чего быстро «проигрывают» всю эту логическую симфонию в обратном порядке и оставляют в сознании правильные заключения, бракуя неправильные. Чтобы такую работу, хотя бы приблизительно, производила машина, нужно вложить в нее огромное количество мелких логических и языковых элементов, сообщить ей много правил и сложных процедур оперирования.

Поскольку машина может реагировать лишь на знаки (мы не имеем здесь в виду сложной проблемы распознавания зрительных образов машиной; знаки могут быть очень простыми — например, представлять собой набор штифтов, вставляемых в соответствующие отверстия), содержание слов и фраз ей недоступно. Поэтому для устройства сносно работающей логической машины необходима как минимум детально разработанная логическая символика, так сказать, «логический синтаксис», заключающийся в своде правил относительно того, какие сочетания символов могут встречаться вместе (и в каких комбинациях) и какие запрещены, а также «логическая грамматика» — свод правил, по которым одни комбинации (разрешенные) символов перерабатываются в другие комбинации.

Лейбниц, конечно, понимал это, хотя, наверняка, не представлял себе, сколь сложной является задача отвлечения от всего того, что стоит за рассуждениями людей, от философских или богословских постулатов, от внешней реальности, отражаемой в языке, как трудно позабыть обо всем этом, «разъять как труп» формальные логические структуры, с тем чтобы позже, детально изучив их различные допустимые виды, снова собрать воедино в сложном синтезе, в огромном искусственном механизме, способном в специфической форме воспроизводить и усиливать то, что делает человек с помощью мышления и естественного языка. Избежать этой кропотливой черновой работы было нельзя. Но ее начали делать по-настоящему лишь в XIX веке Джордж Буль и другие математики и логики, о которых речь пойдет в следующей главе. И в том же XIX веке была продолжена «механическая» линия развития логики, идущая от Луллия и Лейбница.

Мы познакомимся с одной из логических машин прошлого столетия — с машиной Джевонса. Она была основана на более детально разработанной формализованной логике, чем логические исчисления, которые строил Лейбниц. Это и не удивительно: Джевонс не только хорошо знал труды основоположника математической логики Буля (которые оценивал как «эпоху в человеческом мышлении») и другого известного математика того времени — Августа Де Моргана (1806—1871), но и сам разработал оригинальную систему алгебраического логического исчисления. Последнее и было положено в основу действия его машины.

Уильям Стенли Джевонс (1835—1882), профессор логики и политической экономии в Манчестере, а затем в Лондоне, построил свою машину в 1869 году. Ныне она хранится в Музее истории наук в Оксфорде. Ее демонстрация в свое время вызвала, по-видимому, большой интерес и явилась некоторого рода сенсацией; но она не производила, вероятно, того мистического впечатления, как когда-то прибор Луллия. Времена изменились, и хотя многие люди и в наши дни легко могут поверить в «летающие тарелки», все же престиж научного знания вырос существенно. Поэтому на устройство Джевонса смотрели как на Доказательство торжества точных наук и математики, а не как на таинственный «указатель истины».

Машина Джевонса вызвала интерес и в нашей стране: в конце XIX века у нас была опубликована статья с описанием машины[12]

, а в последствии она была воспроизведена в России с некоторыми усовершенствованиями и публично демонстрировалась. Приведем объявление, помещенное в газете «Русские ведомости» от 16 апреля 1914 года:

«Мыслительная машина. В субботу, 19 апреля в большой аудитории Политехнического музея состоится публичная лекция проф. А. Н. Щукарева на тему «Познание и мышление». Во время лекции будет демонстрирована мыслительная машина, аппарат, который позволяет воспроизвести механически процесс человеческой мысли, то есть выводить заключения из поставленных посылок. Машина построена впервые математиком Джевонсом и усовершенствована автором лекции. Результаты ее операций получаются на экране в словесной форме»[13].

Чтобы пояснить, какого рода логические рассуждения можно было «передать» машине Джевонса, расскажем о его логическом исчислении. Это исчисление было модификацией алгебры логики Дж. Буля, о вкладе которого в интересующую нас область речь пойдет в следующей главе.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука