Читаем Жар холодных числ и пафос бесстрастной логики полностью

Но несмотря на всю скрупулезность Фреге, строивши на очерченной логико-множественной базе арифметику натуральных чисел, его логическая конструкция оказалась формально-противоречивой. Суть дела состояла в следующем.

Логическая теория Фреге позволяла, грубо говора вводить в рассмотрение предикаты от предикатов (то есть свойства предикатов и отношения между предикатами предикаты от предикатов, определенных на предикатах, а также множества множеств, множества множеств множеств и т. д. При этом никаких ограничений на образована множеств — на задание их с помощью предикатов — не налагалось. Это допускало в теорию такие образования как «свойство, которым оно само не обладает» или «множество, не входящее в самое себя в качестве элемента». Скажем, множество всех абстрактных понятий содержит само себя в качестве элемента, так как предикат «быть абстрактным понятием» есть тоже абстрактное понятие — в отличив например, от множества людей, которое не содержит саж» себя как элемент, поскольку человечество не есть человек. Поэтому, если быть последовательным в проведении логико-множественного подхода, придется допустить законное» понятия «множества всех множеств, не включающих себя в качестве элемента».

В 1902 году Рассел обнаружил, что в указанном понятии заключено логическое противоречие. Он, видимо, пытался разобраться в возникшей ситуации сам, но сомнения одолевали, и поэтому через год он обратился письменно к Фреге, прося дать разъяснения. Письмо, очевидно, из уважения к Фреге, было написано по-немецки. Мы приводим полный перевод этого исторического документа, сделанный с английского перевода, выполненного Яном ван Хейеноортом и прочитанного лично Бертраном Расселом, разрешившим его публикацию в книге Хейенсюрта «От Фреге до Гёделя»[24] (эта книга представляет собой сборник классических работ — и фрагментов работ — по математической логике и основаниям математики).

Фрайдис-хилл, Хейслмир, 16.6.1902

Дорогой коллега,

уже полтора года назад я познакомился с Вашими «Основными законами арифметики», но только сейчас я сумел найти время, чтобы изучить Вашу работу тщательно, как я все время намеревался это сделать. Я обнаружил, что согласен с Вами во всем главном, в частности в том, что Вы отвергаете все психологические моменты в логике, и Вашей высокой оценке идеографии[25] в основаниях математики, которые сейчас трудно отделить от формальной логики. В связи со многими частными вопросами я нашел в Вашей книге множество рассуждений, тонких исследований и определений, которые тщетно было бы искать в сочинениях других логиков. В вопросах, касающихся функций, я самостоятельно пришел к взглядам, совпадающим с Вашими даже в деталях. Имеется только один пункт, в котором я встретился с трудностью. Вы утверждаете, что функция[26] не нуждается в прямом определении. Я тоже раньше так думал, но сейчас такая точка зрения кажется мне сомнительной из-за следующего противоречия. Пусть w есть предикат «быть предикатом, который не относится к самому себе». Относится ли этот предикат к самому себе? Из любого ответа на этот вопрос вытекает противоположный ответ. Поэтому мы можем заключить, что w не есть предикат. Точно так же не существует такого множества (рассматриваемого как целое), элементами которого являются множества. не содержащие самих себя. Отсюда я заключаю, что при определенных условиях понятию множества не соответствует ничего такого, что может рассматриваться как объект.

Сейчас я заканчиваю книгу о принципах математики[27], и в ней мне хотелось бы рассмотреть Вашу работу весьма подробно. Я уже имею в распоряжении Ваши книги или скоро куплю их, но я был бы весьма благодарен, если бы Вы прислали мне оттиски Ваших статей, опубликованных в периодических изданиях. Впрочем, если это невозможно, я могу читать их, беря в библиотеке.

Умение хорошо применять логику в фундаментальных вопросах, где бессильны формулы, встречается очень редко; в Ваших работах я нахожу лучшее из таких применений, имеющихся на сегодня, поэтому я разрешу себе выразить Вам свое глубокое уважение. Очень жаль, что Вы не опубликовали второй том «Основных законов»; надеюсь, что это все же будет сделано.

С уважением Бертран Рассел

В словах Рассела о втором томе книги Фреге не было, конечно, никакой иронии. Но была ирония судьбы, ибо этот том вот-вот должен был выйти в свет, когда Фреге получил письмо Рассела. Проявив редкую научную добросовестность и мужество, Фреге включил в книгу вышедшую в 1903 году, следующие слова:

«Вряд ли существует что-нибудь более нежелательное для ученого, чем после окончания работы увидеть, как рушатся ее основы. Именно в такое положение поставило меня письмо г-на Бертрана Рассела, полученное мной, когда книга была уже в печати»[28].

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука