Читаем Жар холодных числ и пафос бесстрастной логики полностью

Самым длинным, наверное, было расстояние от этого ощущения до осознанной логики (дальше дело пошло гораздо быстрее). Ведь чем, собственно говоря, оно вызывается? Если разобраться в нем до конца, окажется, что основание его таково: в выступлении Сократа проявляются какие-то не зависящие ни от самого Сократа, ни от какого-либо другого человека законы, которые не позволяют повернуть ход его рассуждений, его речь в любую сторону, а начиная с некоторого момента, предопределяют ее направления необходимым образом. Суть этих законов в том, что если в начале рассуждения сделаны некоторые утверждения (высказывания, суждения), то в конце его могут быть уже не любые, а лишь вполне определенные утверждения. Именно из-за этого ораторы часто кончают не тем, чем собирались кончать, иногда даже совсем противоположным, можно сказать, что в этих случаях не они формируют речевой текст, а, наоборот, текст как бы управляет их голосовым аппаратом, приобретая своего рода самостоятельность. Тема этой книги не такова, чтобы подробно исследовать «Апологию Сократа», но нам представляется убедительным, что подобный анализ мог бы выявить удивительную вещь: Сократ (конечно, нужно все время иметь в виду, что автор речи на самом деле — Платон) в своем оправдательном выступлении как раз и попал в такую зависимость от хода собственных рассуждений и, вместо того чтобы защищаться, бросил вызов смерти.

Но можем ли мы сказать, что как только была замечена определенная самостоятельность хода рассуждения, тут же и возникла логика? Ни в коем случае. Многие тысячи лет, вероятно, об этой самостоятельности знали, но трактовали ее как явление, целиком относящееся к содержанию речи. И только в тот момент, когда в рассуждении был замечен и выделен элемент, связанный исключительно с его формой, родилась логика. А это случилось сравнительно поздно, хотя наверняка раньше, чем были написаны «Диалоги», то есть до Платона и Аристотеля.

У Платона формальные законы построения рассуждений используются во многих диалогах весьма широко и вполне сознательно. Вообще труды этого мыслителя создают впечатляющую картину постепенного извлечения из разговорного языка логических структур и последующего использования этих структур для целей весьма далеких от обыденной жизни — для построения абстрактных научных теорий.

Возьмем увлекательнейший по своей фабуле диалог «Протагор». Рано утром к Сократу приходит возбужденный Гиппократ[3], принося свежую новость: в Афины приехал знаменитый софист Протагор. Гиппократ много слышал об ораторском искусстве Протагора и, раз уж представился такой случай, не пожалел бы никаких денег, чтобы поучиться у него красноречию. Он просит Сократа пойти с ним к Протагору и походатайствовать, чтобы тот не отказался дать несколько уроков. Сократ, в душе считая Протагора лжемудрецом, намерен отговорить Гиппократа от его затеи. Но сделать это нужно осторожно. И Сократ добивается своей цели в два приема. Сначала, прогуливаясь с Гиппократом еще до визита к Протагору, он затевает такого рода беседу, что Гиппократ, понуждаемый к этому формальными законами рассуждения против своего желания, делает некоторые утверждения, несовместимые с его намерением учиться у Протагора. Как это происходит, мы сейчас увидим из приводимого ниже отрывка[4].

«

— Скажи мне, Гиппократ, вот ты теперь собираешься идти к Протагору, внести ему деньги в уплату за себя, а, собственно говоря, для чего он тебе нужен, кем ты хочешь стать? Скажем, задумал бы ты идти к своему тезке, Гиппократу Косскому, одному из Асклепиадов, чтобы внести ему деньги в уплату за себя, и кто-нибудь тебя спросил бы: «Скажи мне, Гиппократ, ты вот хочешь заплатить тому Гиппократу, но кто он, по-твоему, такой?» — что бы ты отвечал?

— Сказал бы, что он врач.

— А кем ты хочешь сделаться?

— Врачом.

—А если бы ты собирался отправиться к Поликлету аргосцу или Фидию афинянину, чтобы внести им за себя плату, а кто-нибудь тебя спросил, кем ты считаешь Поликлета или Фидия, раз ты решил заплатить им столько денег, что бы ты отвечал?

— Сказал бы, что считаю их ваятелями.

— Значит, сам ты хочешь стать кем?

— Ясно, что ваятелем.

— Допустим... А вот теперь мы с тобой отправляемся к Протагору и готовы отсчитать ему деньги в уплату за тебя, если достанет нашего имущества на то, чтобы уговорить его, а нет, то займем еще и у друзей. Так вот, если бы, видя такую нашу настойчивость, кто-нибудь спросил нас: «Скажите мне, Сократ и Гиппократ, кем считаете вы Протагора и за что хотите платить ему деньги?» — что бы мы ему отвечали? Как называют Протагора, когда говорят о нем, подобно тому как Фидия называют ваятелем, а Гомера — поэтом? Что в этом роде слышим мы относительно Протагора?

— Софистом называют этого человека, Сократ.

— Так мы идем платить ему деньги, потому что он софист?

— Конечно.

— А если бы спросили тебя еще и вот о чем: «Сам-то ты кем намерен стать, раз идешь к Протагору?»

Гиппократ покраснел, уже немного рассвело, так что это можно было разглядеть.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика