Читаем Жар холодных числ и пафос бесстрастной логики полностью

14. Мы не останавливаемся на некоторых деталях определения;

понятия «верные равенства формул», отсылая читателя к книге П. С. Новикова, указанной в примечании 6.

В этой книге говорится, правда, об отношении «равносильности» формул, но это по существу то же, что мы имеем в виду под совпадением функций (точнее, впрочем, то же, что в следующей интерпретации окажется равенством или равносильностью форм высказываний).

47


15. Вместо слов «формула а при данных значениях своих переменных переходит в истинное (или ложное) высказывание» мы будем употреблять и такое выражение: «формула а принимает такое-то (истинностное) значение», а также говорить: «формула а истинна (ложна)».

48


16. В связи с данной интерпретацией заметим, что со знаками -> и можно было с самого начала поступить иначе: не вводить их определениями (как сокращения), а включить в сам язык формальной системы — в ее алфавит (расширив соответствующим образом пункт I в)). Это приведет к расширению понятия формулы и добавлению к системе постулатов схем аксиом для -> и . А именно, в пункт II (в) добавляется- «если а и — формулы, то (а -> ) и (а ) — тоже формулы», а к системе постулатов IV[a] присоединяются: 18. (а -> ) = (~а V ) и 19. (а ) = (~а V ) & (а V ~)). Пункт V при этом должен быть удален.

49


17. Ср. формулировку этих законов у Джевонса (с. 43). Очевидно, что способ «формульного» представления этих законов зависит от характера рассматриваемого логического аппарата.

рис. 7. Круговые схемы, изображающие пять возможных отношений между двумя произвольными классами а и .

50


18. Аналогично, в школьной математике не пишут, скажем, ((а+b)+с)+d или (а+b)+(с+d) а записывают просто а+b+с+d.

51


19. Эрнет Шредер (E. Schroder, 1841—1902) является автором трехтомных «Лекций по алгебре логики» (Vorlesungen uber die Logik. Bd. 1-3, Leipzig, 1890—1905), знаменующих собой — вместе с трудами русского логика и астронома П. С. Порецкого (1846—1907) — вершину развития алгебры логики в прошлом столетии. Задача, которая приводится ниже, заимствована из первого тома «Лекций». Эту задачу приводила в своих лекциях по математической логике в Московском университете С. А. Яновская; мы приводим задачу в ее формулировке.

52


20. Впрочем, операции булевой алгебры можно задавать указанием и других наборов их свойств. О булевых алгебрах см., например:

И. М. Яглом. Алгебра Буля.— В сб.: «О некоторых вопросах современной математики и кибернетики». М., 1965.

53


21. Напоминаем, что здесь высказывание понимается «классически», то есть как выражение либо истинное, либо ложное, но не то и другое вместе.

54


22. При другом подходе булевой алгеброй для логической интерпретации нашего аппарата можно считать множество форм высказываний (рассматриваемых с точностью до отождествления равносильных форм) вместе с заданными на них операциями ~, &. V - такая булева алгебра высказываний оказывается алгеброй Линденбаума — Тарского, о которой см.: Е. Расёва, Р. Сикорскии. Математика метаматематики. М., 1972, с. 282 и далее.

55


23. Заметим, что булеву алгебру можно сформулировать и на основе отношения = (или >=). См: X. Б. Карри. Основания математической логики. М., 1969.

56


24. Для этого имеются и другие причины. Дело в том, что в алгебре логики Буля можно определить операцию дизъюнкции, и тогда все равенства, верные в логике высказываний как булевой алгебре, будут верными и в теории Буля; с другой стороны, в рассмотренной нами теории можно определить строгую дизъюнкцию (например, так:

(А V B)((A ~В) V (~А В)), и тогда теория Буля может быть пред. ставлена как теория булевой алгебры (в узком смысле).

57


25. Понятие формы класса (классовой формы) следует понимать по аналогии с понятием «форма высказывания».

57


26. Ср. примечание 14.

58


27. Заметим, что при проверке схем аксиом, в каждой из которых фигурирует по две формы классов, следует учитывать возможные отношения между двумя произвольными классами а и . Таких отношений может быть пять: классы а и совпадают; класс а полностью входит в класс , причем в имеются элементы, не принадлежащие а; то же отношение, но с заменой а на и наоборот; классы а и имеют общие элементы, причем в а есть элементы, не принадлежащие классу , и в есть элементы, не принадлежащие а; классы а и не имеют общих элементов. Эти отношения можно передать следующими схемами (рис. 7). Проверяя равенство, нужно убедиться в его справедливости при каждом из этих отношений.

59


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика