Читаем Жемчуг полностью

Изотопный состав кислорода жемчуга колеблется по δ18O от —8,2 до — 20,8‰ и укладывается в пределы, характерные для δ18O кислорода пресноводных карбонатов. Среднее значение δ18O кислорода исследованных жемчужин — 15,8‰ и несколько выше среднего δ

18O пресной воды (—9,11‰). Оно очень близко к δ18O воды Северной Двины (—15,5‰), тогда как δ18O главных жемчугоносных рек Северо-Запада СССР (Кеми, Варзуги, Умбы, Онеги), откуда наиболее вероятно были добыты жемчужины, равно —9,1÷—9,7‰ [С. Д. Николаев, В. И. Николаев, 1976]. То есть прямого унаследования изотопного состава кислорода речной воды изотопным составом кислорода жемчуга не происходит. В данном случае следует допустить возможность биологического фракционирования изотопов кислорода, приводящего к обеднению арагонита жемчуга «тяжелым» изотопом кислорода 18
O. Важно подчеркнуть, что из растворов наиболее обогащенных этим изотопом (δ18O = —8,2‰). формируется перламутровый слой, придающий ценность жемчужине. Внешний слой призматически-слоистой жемчужины, наоборот, кристаллизуется из раствора с минимальным содержанием 18O (δ18O = —19,4 и —20,8‰) В одном и том же моллюске перламутровый слой жемчуга содержит больше «тяжелого» изотопа (δ
18O = —8,2‰), чем перламутровый слой раковины (δ18O = —14,5‰). Переход арагонита в кальцит почти не меняет изотопный состав кислорода исходного карбоната.

Пористость. Жемчужины из водоемов Северо-Запада СССР имеют небольшую пористость. Причем пористость коричневого жемчуга значительно выше, чем белого и серого. Полагают, что только в коричневом жемчуге имеется некоторое количество пор, сосредоточенных главным образом в интервале эквивалентных радиусов 3—5 нм. Суммарная пористость не превышает 1% объема образцов. Если принять во внимание небольшие размеры жемчужин (первые миллиметры), то можно считать их удельную поверхность довольно значительной для всех образцов, особенно для коричневого жемчуга. Это подтверждается наличием пор небольшого размера, часть которых, как подчеркивает Кораго, находится в области эквивалентных радиусов менее 3 нм, не измеряемой на ртутном порометре.

Люминесценция (холодное свечение под действием облучения) — один из важных признаков вещества. Сущность люминесценции состоит в том, что многие минералы, поставленные на пути рентгеновских, катодных или ультрафиолетовых лучей, сами начинают излучать свет. У различных минералов люминесценция разная как по силе, так и по цвету. Известно также, что химически чистые вещества обычно не дают свечения. Необходимы примеси других веществ в минерале в количестве от тысячных долей процента до нескольких процентов, чтобы вызвать его свечение. Поэтому в зависимости от примесей один и тот же минерал в различных месторождениях светится разным светом.

Исследование люминесценции жемчуга ведется давно. Особый интерес к ней проявился в связи с необходимостью отличать выращенную жемчужину от природной, окрашенную (почерненную) — от искусственно выращенной. Оказалось, что под влиянием рентгеновского излучения выращенные жемчужины флюоресцируют сильнее, чем природные. Особенно сильно флюоресцирует перламутровое ядро выращенных жемчужин. Английский исследователь Б. Андерсон [1983] объясняет это тем, что ядро почти всегда изготовляется из перламутра пресноводной раковины и потому обычно содержит небольшую примесь солей марганца. При облучении рентгеновскими лучами ядро дает зеленую люминесценцию и, если оболочка не слишком толстая, передает свечение всей жемчужине. После прекращения действия рентгеновских лучей у выращенного жемчуга наблюдается непродолжительная фосфоресценция. Наиболее интенсивно люминесцирует в рентгеновских лучах, как отмечает Андерсон, культивированный пресноводный жемчуг, выращенный в Японии на озере Бива (бива — жемчуг).

Японские исследователи Г. Коматсу и Ш. Акаматсу установили, что окрашенный (почерненный) жемчуг в ультрафиолетовых лучах не флюоресцирует, тогда как выращенные жемчужины в этих же лучах отчетливо флюоресцируют в желто-красных тонах.

Пресноводный жемчуг люминесцирует примерно так же, как и выращенный. Детальное исследование люминесценции пресноводного жемчуга из водоемов Северо-Запада СССР провел Кораго. Он установил, что спектр люминесценции пресноводного жемчуга имеет широкую полоску, охватывающую весь видимый диапазон спектра от 360 до 700 нм. Максимум спектра зависит от характера жемчужины. Так, в белых (ювелирных) и серых жемчужинах он находится в области 485—495 нм, в коричневых — в области 525 нм. Спектр люминесценции японского культивированного жемчуга близок к спектру отечественного пресноводного жемчуга, но отличается большей интенсивностью.

Перейти на страницу:

Все книги серии Человек и окружающая среда

Похожие книги

Супервулканы. Неожиданная правда о самых загадочных геологических образованиях Вселенной
Супервулканы. Неожиданная правда о самых загадочных геологических образованиях Вселенной

Вулканы неотделимы от истории Земли и всей жизни на ней. Вулканолог и научный журналист Робин Эндрюс раскрывает научное и историческое значение вулканов и вулканических регионов и показывает, как они влияют на формирование моря, суши и состава воздуха.«Вулканы позволяют нам проникнуть в тайны, которые не может открыть ни один другой природный процесс. Пики, кратеры и расселины образуются, обретают определенную форму и извергаются потому, и только потому, что планетарные машины-двигатели, расположенные глубоко под поверхностью планеты, работают особым образом. Извержения даруют нам золото научных открытий. Они подсказывают, почему на одной планете есть вода и атмосфера, а на другой нет; где континенты разрываются на части, создавая новый океан; состоит ли поверхность планеты из кусочков пазла, движение которых задает форму всему, что происходит на поверхности. Они переносят нас на миллиарды лет в прошлое, чтобы мы могли узнать, как рождаются планеты, и позволяют заглянуть в будущее, которое может их ожидать. Вулканы являют пример чрезвычайной стойкости жизни, которая далеко превосходит человеческую. Они также показывают, как могут и как не могут умирать целые миры». (Робин Джордж Эндрюс)В формате PDF A4 сохранён издательский дизайн.

Робин Джордж Эндрюс

Геология и география