Читаем Жизнь науки полностью

В том же реалистическом духе мы рассматриваем здесь вопрос о непротиворечивости — один из вопросов, наиболее занимающих современных логиков и в той или иной мере встающих уже с самого начала*, при создании формализованных языков (см. «Исторический очерк»). Та или иная математическая теория называется противоречивой, если какая—либо теорема доказывается в пей вместе со своим отрицанием. Тогда из обычных правил умозаключения, лежащих в основе правил синтаксиса формализованных языков, можно вывести следствие, что любая теорема одновременно и истинна, и ложна в этой теории, теряющей тем самым всякий интерес. Если, таким образом, мы нечаянно придем к противоречию, то мы не можем оставить его существовать далее, не обесценивая теории, в которой оно возникло.

Можно ли приобрести уверенность, что этого никогда не случится? Не пускаясь по этому поводу в выходящие за пределы нашей компетенции споры о самом понятии уверенности, заметим, что математика может попытаться рассмотреть проблемы непротиворечивости своими собственными методами. В самом деле, сказать, что некоторая теория противоречива, сводится к тому, чтобы сказать, что она содержит правильное формализованное доказательство, оканчивающееся заключением 0=7^0. Но метаматематика может пытаться с помощью способов рассуждения, заимствованных у математики, изучить строение этого формализованного текста, предполагаемого записанным, и в итоге ухитриться «доказать» невозможность такого текста. В самом деле, такие «доказательства» были даны для некоторых частных формализованных языков, менее богатых, чем тот, который мы хотим ввести, но достаточно богатых для того, чтобы на них можно было записать значительную часть классической математики. Можно спросить, правда, что именно «доказывается» таким путем; ведь если бы математика была противоречива, то некоторые ее применения к материальным объектам, и в частности к формализованным текстам, рисковали бы стать иллюзорными. Чтобы избежать этой дилеммы, было бы необходимо, чтобы непротиворечивость формализованного языка можно было «доказать» посредством рассужде-ппй, формализуемых в языке, менее богатом и тем самым более достойном доверия. Но знаменитая теорема математики, принадлежащая Гёделю, говорит, что это невозможно для языка того типа, который мы хотим описать, т.е. для языка, достаточно богатого аксиомами, чтобы допускать формулировку результатов классической арифметики.

С другой стороны, при доказательствах «относительной» непротиворечивости (т.е. при доказательствах, устанавливающих непротиворечивость данной теории в предположении непротиворечивости другой теории, например Теории множеств) метаматематическая часть рассуждения (ср. гл. 1, § 2, п° 4) настолько проста, что даже не представляется возможным подвергнуть ее сомнению, не отказываясь при этом от всякого рационального употребления наших умственных способностей. Так как ныне различные математические теории привязываются в отношении логики к Теории множеств, то отсюда следует, что всякое противоречие, встреченное в одной из этих теорий, дало бы повод противоречию в самой Теории множеств. Это, конечно, не есть аргумент, позволяющий заключить о непротиворечивости Теории множеств. Однако за 40 лет с тех пор, как сформулировали с достаточной точностью аксиомы Теории множеств и стали извлекать из них следствия в самых разнообразных областях математики, еще ни разу не встретилось противоречие, и можно с основанием надеяться, что оно и не появится никогда.

Если бы дело и сложилось иначе, то, конечно, замеченное противоречие было бы внутренне присуще самим принципам, положенным в основание Теории множеств, а потому нужно было бы видоизменить эти принципы, стараясь по возможности не ставить под угрозу те части математики, которыми мы наиболее дорожим. И ясно, достичь этого тем болео легко, что применение аксиоматического метода и формализованного языка позволит формулировать эти принципы более четко и отделять от них следствия более определенно. Впрочем, приблизительно это д произошло недавно, когда устранили «парадоксы» Теории: множеств принятием формализованного языка, по существу эквивалентного с описываемым здесь нами. Подобную ревизию следует предпринять и в случае, когда этот язык окажется в свою очередь противоречивым.

Итак, мы верим, что математике суждено выжить ж что никогда не произойдет крушения главных частей этого величественного здания вслед-ствпо внезапного выявления противоречия; но мы не утверждаем, что ато мнение основано на чем-либо, кроме опыта. Этого мало, скажут некоторые. Но вот уже двадцать пять веков математики имеют обыкновение исправлять свои ошибки и видеть в этом обогащение, а не обеднение своей науки; это дает им право смотреть в грядущее спокойно.

НЕЙМАН

(1903-1957)

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука