Читаем Жизнь замечательных устройств полностью

Ещё одна проблема, путей решения которой Мартон не видел — как бороться с неизбежным испарением воды из биологического образца в условиях разрежения рабочей камеры электронного микроскопа и связанным с этим испарением изменением форм изучаемых белков и нуклеиновых кислот. Невооружённым глазом было видно и другие проблемы — биологические объекты могли отличаться крайне низкой контрастностью изображения при прохождении через них электронов с высокой энергией; энергию электронного пучка нельзя было делать очень высокой для предотвращения повреждения образца уже на химическом уровне организации; для предотвращения вторичного рассеивания электронов образцы должны были быть не просто тонкими, а представляющими собой идеальный монослой, состоящий из изучаемых объектов. Также было очевидно, что для записи изображений нужно использовать быстрые детекторы — изучаемые биомолекулы могли менять свою форму или даже перемещаться из-за незначительного дрейфа температуры или взаимодействия с бомбардирующими их электронами.

Необходимость изучать низкоконтрастные биологические материалы с использованием электронов, обладающих как можно меньшей энергией, стимулировала разработку новых подходов к приготовлению и подготовке биологических материалов для анализа. Первым методом, применение которого позволило значительно увеличить качество получаемого изображения, был метод негативного контрастирования, разработанный в 1940-х годах и модифицировавшийся следующие два десятка лет после изобретения (J. Applied Physics, 1945, 16, 459–465 DOI: 10.1063/1.1707615; J. Mol. Biol., 1965, 11, 403–423; DOI: 10.1016/S0006-3495(89)82799-7).



Метод негативного контрастирования основан на том, что биологический материал внедряют в тонкую аморфную плёнку соли тяжелого металла (например, фосфата вольфрама), формирующую определенный шаблон вокруг биомолекул. Полученный шаблон рассеивает электроны эффективнее инкапсулированного в него биологического материала, он более устойчив по отношению к повреждению потоком электронов и не дает биологическим молекулам менять форму во время их сушки в вакууме в камере электронного микроскопа.

Негативное контрастирование образцов позволило получать детальную информацию о строении бактерий, вирусов и клеточных органоидов. Однако, при уменьшении масштаба, например, при попытке изучить положение молекул в молекулярных комплексах, можно получить, в лучшем случае, только изображение «конверта», в который помещались биомолекулы; разрешение этого изображения ограничивалось величиной зерна шаблона. Несмотря на изъяны, такой метод подготовки пробы позволил исследователям получить информацию о структуре ряда соединений, правда, в низком разрешении. Разработанные в то время экспериментальные и теоретические подходы, применявшиеся для получения информации о трехмерной структуре объекта с помощью суммирования его двумерных проекций, полученных с помощью электронного микроскопа, заложили основы криоэлектронной микроскопии.



Улучшения в методы исследования биологических объектов с помощью электронной микроскопии внёс в том числе и Аарон Клуг, получивший в 1982 году Нобелевскую премию по химии «…за разработку метода кристаллографической электронной микроскопии и прояснение структуры биологически важных комплексов нуклеиновая кислота — белок…». Он одним из первых пришел к тому, что для уточнения трехмерной структуры объекта, полученного с помощью метода негативного контрастирования, необходимо получать двумерные проекции с различных направлений, что можно организовать, изменяя угол, под которым на образец направляется поток электронов, или проводя анализ большого количества частиц, ориентированных различным образом. В 1960-х годах Клуг применил свои подходы, с помощью электронного микроскопа изучив тонкие кристаллы каталазы (Berichte der Bunsengesellschaft für physikalische Chemie, 1970, 74, 1129–1137; DOI: 10.1002/bbpc.19700741109

).

В 1968 году Клуг совместно с Давидом ДеРозье сообщили о первом удачном примере вычисления трехмерной модели биологического объекта на основании информации о двумерных проекциях, полученных с помощью электронного микроскопа. Исследователи изучили хвост бактериофага T4, он был выбран в качестве объекта исследования благодаря своей спиралевидной симметрии. Для него трехмерную модель можно было построить, анализируя лишь одну двумерную проекцию, которая давала ровно такую же информацию, которую можно было получить, анализируя хвост вируса под другими углами (Nature, 1968, 217, 130–134; DOI:10.1038/217130a0).



Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Никола Тесла. Пробуждение силы. Выйти из матрицы
Никола Тесла. Пробуждение силы. Выйти из матрицы

Книга рассказывает историю величайшего славянского гения, Николы Теслы. Показано, что в своих научных исследованиях Никола Тесла опередил, предвосхитил или превзошел открытия и достижения по меньшей мере 37 Нобелевских лауреатов по физике. Полностью восстановлен и детально разбирается на примере экспериментов Николы Теслы принцип беспроводной передачи энергии и получения электрической энергии из окружающей среды.Книга основана на достоверных архивных материалах и документах (в т. ч. публикуемых впервые по лицензии Музея Николы Теслы в Белграде, Сербия).Книга обращена в первую очередь к молодежи и тем людям, которые еще не потеряли веру в справедливость, чувствуют в себе таланты и силы, но которые уже столкнулись с жесткими ограничениями окружающей среды. В нас есть нечто большее, чем мы о себе знаем. Осознание этого поможет нам стать в тысячи раз сильнее и добиться победы, процветания и настоящего могущества, перейти на следующий уровень понимания и осознать, как глубока кроличья нора.

Дмитрий Евгеньевич Крук , Дмитрий Крук

Биографии и Мемуары / История техники / Документальное
Изобретено в СССР
Изобретено в СССР

Изобретательская мысль в Советском Союзе развивалась своеобразно. Ее поощряли в избранных областях – космической, военной, научной – и практически игнорировали в бытовой. Иначе говоря, мы совершали важнейшие прорывы в ракетостроении и фундаментальных исследованиях, но серьёзно отставали во всём, что касалось повседневной жизни, от пылесосов до автомобилей. У этой книги две задачи. Первая – рассказать об изобретениях, сделанных нашими соотечественниками в советский период, максимально объективно, не приуменьшая и не преувеличивая их заслуг; вторая – показать изобретательство в СССР в контексте, объясняющем его особый путь. И да, конечно, – развеять многочисленные мифы, связанные с историей изобретательства.

Тим Юрьевич Скоренко

История техники / Научно-популярная литература / Образование и наука