То, что цикл клеточного деления не изменился даже после длительного пребывания животных в искусственных условиях непрерывной освещенности, говорит об устойчивости этого биоритма. Очевидно, все-таки смена освещенности не является регулятором ритма деления клеток в организме. Можно предположить, что в организме существуют внутренние датчики времени, заведующие ритмом митотической активности. Можно было бы к числу таких датчиков отнести эндокринный аппарат, однако пока экспериментальные данные не дают уверенности, что именно эндокринные железы выполняют роль биологических часов, регулирующих деление клеток. Неясным остался и такой важный вопрос: как зависит от внешней фотопериодичности продолжительность самого процесса деления? В проведенном опыте не наблюдалось разницы между скоростью, с которой протекает деление в клетках животных, содержавшихся в условиях бесконечного дня, и животных из контрольной группы.
На результаты сельскохозяйственной деятельности человека все еще очень сильно влияют условия внешней среды, именуемые гидрометеорологическими. Изменять их по своему усмотрению мы пока не в состоянии, но научились прогнозировать со все большей степенью оправдываемости. Очевидно, нет надобности подробно объяснять, почему важно знать количественные закономерности развития сельскохозяйственных культур в различных агроклиматических зонах, — ведь на основе этих закономерностей и долгосрочных прогнозов погодных условий можно заранее определить, каким будет урожай.
Формирование урожая — это сложная совокупность целого ряда физиологических процессов, интенсивность которых определяется особенностями растений и условиями внешней среды. Среди этих процессов основную роль играет фотосинтез, который у зерновых колосовых культур совершается не только в листьях, но и в других надземных органах — стеблях, колосьях. Особенно высокую фотосинтетическую активность колосья проявляют в фазе молочной спелости, не уступая в этом отношении листьям двух первых ярусов. Фотосинтез каждого органа тем интенсивнее, чем больше поверхность, ассимилирующая углекислоту, и чем длиннее световой день. Прирост биомассы того или иного растения за сутки определяется разностью между поступлением в орган свежих продуктов фотосинтеза и расходом их на дыхание, а также балансом перераспределения ««старых» ассимилятов.
Засуха нарушает основные процессы жизнедеятельности растений, при этом подземные части растения увеличиваются — это специфическая приспособительная реакция, направленная на поддержание возможно более высокого содержания воды в фотосинтетических центрах. Если засуха затягивается, фотосинтез может вообще прекратиться.
Авторы статьи предложили динамическую имитационную модель формирования урожая озимой пшеницы. Модель анализирует основные процессы жизнедеятельности злака и влияние на интенсивность этих процессов условий внешней среды: фотосинтетической активности, радиации, длины светового дня, среднедневной температуры воздуха, облачности в весенне-летние месяцы, запаса продуктивной почвенной влаги. Модель может быть применена для разработки метода количественных оценок ожидаемых урожаев зерна с учетом долгосрочных прогнозов гидрометеорологических условий.
СЭВ В ДЕЙСТВИИ ∙ Кандидаты на одомашнивание
Операция «Трескучий боб»
Научное название этого растения — Psophocarpus tetragonolobus — можно перевести как «гремучий плод с четырехдольчатым проростком». Этот вид происходит из юго-восточной Азии. Это — многолетнее вьющееся растение семейства бобовых; в тропических условиях оно достигает высоты трех-четырех метров. Листья у него тройчатые наподобие фасоли, цветы чаще всего синие или голубые, собранные гроздьями по 2–5 штук.
Если этот первый абзац наскучил вам своей слишком специальной терминологией и вам не хочется читать дальше, потерпите еще немного и прочтите еще несколько строк, содержащих сенсационную информацию.
Трескучий боб — растение, могущее спасти мир от голода. Это замечательное растение — открытие чехословацких ученых. На полях Вьетнама происходит сейчас мирное сражение под шифром «Операция «Трескучий боб».