Читаем А ну-ка, догадайся! полностью

А что, если начертить на листе в клеточку прямоугольник и, разрезав его на части, составить из них квадрат? Это тоже интересная задача, и, возможно, вам захочется решить ее.

Длины отрезков, фигурирующих в этом парадоксе, равны 5, 8, 13 и 21 дм. Возможно, вы вспомните, что уже встречали эти числа как члены знаменитой последовательности. А может быть, вы вспомните и рекуррентное соотношение, которому удовлетворяют ее члены? Они называются числами Фибоначчи. Каждое из них равно сумме двух предыдущих: 1, 1, 2, 3, 5, 8, 13, 21, 34…

Другие варианты того же парадокса основаны на использовании других четверок последовательных чисел Фибоначчи. Но о каком бы из вариантов ни шла речь, площадь прямоугольника неизменно отличается от площади квадрата: в одних случаях на 1 больше, в других — на 1 меньше. Далее вы обнаружите, что когда площадь прямоугольника на 1 меньше, то вдоль его главной диагонали части перекрываются, образуя едва заметный ромб площадью как раз в недостающую единицу, а когда площадь прямоугольника на 1 больше, то вдоль главной диагонали части не примыкают друг к другу вплотную, оставляя зазор в форме ромба площадью в лишнюю единицу.

Можно ли, зная, какие именно четыре последовательных числа Фибоначчи положены в основу варианта, предсказать, будет ли площадь прямоугольника больше или меньше площади квадрата? Оказывается, можно. Парадокс наглядно демонстрирует одно из фундаментальных свойств чисел Фибоначчи: квадрат любого числа Фибоначчи равен произведению двух соседних (предшествующего и последующего) чисел плюс или минус 1, то есть

F2n = Fn-1Fn+1 ± 1

Левая часть этого равенства задает площадь квадрата со стороной Fn, а правая — уменьшенную или увеличенную на 1 площадь прямоугольника со сторонами Fn-1 и Fn+1. Знаки «плюс» и «минус» чередуются при переходе от одного числа Фибоначчи к следующему. Квадраты чисел Фибоначчи с нечетными номерами (например, 2, 5, 13) на 1 больше произведения двух соседних чисел с четными номерами. Квадраты чисел Фибоначчи с четными номерами (например, 3, 8, 21) на 1 меньше произведения двух соседних чисел с нечетными номерами. Зная, это, вы легко можете предсказать, будет ли прямоугольник, составленный из частей квадрата, больше или меньше квадрата.

Последовательность «настоящих» чисел Фибоначчи начинается с двух единиц, но последовательность «обобщенных» чисел Фибоначчи может начинаться с любых двух чисел. Вы можете рассмотреть варианты парадокса, основанные на обобщенных числах Фибоначчи. Например, последовательность 2, 4, 6, 10, 16, 26… порождает прямоугольники, площадь которых отличается то в одну, то в другую сторону от площади квадрата на 4. Последовательность 3, 4, 7, 11, 18… порождает прямоугольники, площадь которых отличается то в одну, то в другую сторону рт площади квадрата на 5.

Пусть a, b и с — любые три последовательных обобщенных числа Фибоначчи, а х

— разность площадей прямоугольника и квадрата (избыток или недостаток). Тогда справедливы две формулы:

а + b = c

Ь2 = ас ± х.

Подставив вместо х любой избыток или недостаток площади, а вместо Ь — любую длину стороны квадрата и решив систему двух выписанных выше уравнений, мы найдем соответствующие значения а и с (хотя они не обязательно получатся рациональными).

А нельзя ли разрезать квадрат на четыре части так, чтобы из них можно было составить прямоугольник, площадь которого была бы равна площади квадрата?

Чтобы ответить на этот вопрос, положим во втором из уравнений нашей системы х = 0 и выразим

b через с. Единственное положительное решений (отрицательное мы отбрасываем, так как Ь — длина отрезка) имеет вид


Величина (1 + 5½)/2 — знаменитое золотое сечение, или φ. Это иррациональное число, равное 1,618033… Иначе говоря, числа φ

1, φ, φ2, φ3

, φ4

образуют единственную последовательность Фибоначчи, обладающую тем свойством, что квадрат любого ее члена (начиная со второго) равен произведению двух соседних членов.

После некоторых преобразований можно показать, что последовательность Фибоначчи эквивалентна последовательности

1, φ, φ + 1, 2φ+1, Зф + 2… (*)

и ее члены обладают отличительным признаком чисел Фибоначчи: каждый из них (начиная с третьего) равен сумме двух предыдущих.

Только разрезая квадрат на части, длины которых совпадают с четверками последовательных чисел Фибоначчи из (*), мы получим вариант парадокса с равновеликими прямоугольником и квадратом. Более подробно о золотом сечении и о его связи с парадоксом о разрезании квадрата и превращении его в прямоугольник см. в главе 23 («Число φ — золотое сечение») моей книги «Математические головоломки и развлечения».[9]



Через несколько месяцев мистер Рэнди снова пришел к Омару. На этот раз он принес с собой ковер размером 12х12 дм2.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг