Читаем А ну-ка, догадайся! полностью

Существует хороший способ проверить, насколько вы разобрались в механизме действия двойного зеркала: спросите себя, что вы увидите, взглянув в два зеркала, составленные под прямым углом так, чтобы ребро образуемого ими двугранного угла заняло горизонтальное положение? Двукратное отражение в таком зеркале окажется перевернутым! Является ли перевернутое изображение вашего лица еще и обращенным? Нет, перевернутое отражение, как и прямое, не обращено. Стоит вам подмигнуть левым глазом, как вы увидите, что лицо в зеркале подмигнет вам глазом, расположенным против вашего правого глаза.

Все эти фокусы с зеркалами служат великолепным введением в теорию симметрии и отражений в курсе геометрических преобразований. Элементарная теория преобразований позволяет объяснить все парадоксы, связанные с зеркальной симметрией.


Кубики и прекрасная незнакомка



Сколько, по-вашему, здесь кубиков: 6 или 7?



Кто изображен на портрете: прекрасная незнакомка или старая ведьма?



Что вы здесь видите: куб, стоящий в углу комнаты, куб, прилепленный извне к большому блоку, или выемку в форме куба в большом блоке?


Все эти оптические иллюзии — примеры того, как один и тот же рисунок может по-разному восприниматься нашим сознанием. В первом случае ваш разум воспринимает плоский рисунок как перспективное изображение сложенной из кубиков пирамиды, причем рисунок допускает две интерпретации.

Они обе одинаково допустимы, и наш разум колеблется между ними, будучи не в силах отдать предпочтение ни одной из них.

То же можно сказать и о портрете то ли прекрасной молодой девушки, то ли безобразной старухи.

Невозможно видеть что-нибудь одно: наш разум непрестанно мечется от одной интерпретации к другой.

Третья оптическая иллюзия допускает сразу три интерпретации. Для большинства людей труднее всего увидеть блок с кубической выемкой, поскольку такие выемки встречаются сравнительно редко. Но если вы, глядя на рисунок, попытаетесь представить себе, что перед вами блок, из которого вырезан кубик, то сможете увидеть выемку. Обучение «видению» трех возможных интерпретаций последнего рисунка тесно связано с вашей способностью интерпретировать геометрические чертежи. В геометрии неверное «видение» чертежа — один из основных источников ошибок.


Мистер Рэнди и его необыкновенные ковры



У всемирно известного фокусника мистера Рэнди есть ковер размером 13х13 дм2

. Он обратился к торговцу коврами Омару с просьбой сделать из его ковра другой — размером 8х21 дм2.



М-р Рэнди. Дорогой мой Омар, разрежьте мой ковер на 4 части и сшейте их так, чтобы получился ковер размером 8х21 дм2.

Омар. Должен огорчить вас, мистер Рэнди. Вы непревзойденный фокусник, но — с арифметикой у вас явно не в порядке: 13х13 = 169, 8х21 = 168. Из вашей затеи ничего не получится.



М-р Рэнди. Мой дорогой Омар! Великий Рэнди никогда не ошибается. Вот вам выкройка. Разрежьте ковер по ней.



Когда Омар разрезал ковер по выкройке, Рэнди расположил куски ковра по-другому, и Омар, искусно сшив их, получил новый ковер размером 8х21 дм2.

Омар. Не верю своим глазам! Площадь ковра сократилась со 169 до 168 дм2! Куда делся недостающий квадратный дециметр?


Этот классический парадокс настолько поразителен и труднообъясним, что вы не пожалеете, если перечертите выкройку мистера Рэнди на бумаге в клеточку и, разрезав ее на части, составите из них прямоугольник. Если части прямоугольника не очень велики и вырезаны и вычерчены с обычной, не слишком высокой точностью, то вы вряд ли заметите, что вдоль главной диагонали прямоугольника эти части слегка перекрывают одна другую. Именно тем, что части не прилегают друг к другу, а находят друг на друга вдоль главной диагонали, и объясняется таинственное исчезновение 1 дм2. Если ссылка на перекрытие частей покажется вам недостаточно убедительной, вы легко сможете проверить ее правильность, сравнив угол наклона диагонали прямоугольника и угол наклона соответствующих участков периметра четырех частей.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг