Читаем А ну-ка, догадайся! полностью

М-р Рэнди. Мой дорогой Омар!

Случилась беда: электрообогреватель опрокинулся на ковер и прожег в нем дырку. Разрезав ковер на части и сшив их по-другому, вы сможете легко скрыть этот изъян.



Оставив сомнения, Омар последовал инструкциям мистера Рэнди.

Сшив части прежнего ковра, он получил ковер размером 12х12 дм2. Дыра бесследно исчезла!



Омар. Как вам удалось это сделать, мистер Рэнди? Откуда вы взяли недостававший квадратный дециметр, чтобы заделать дыру?


Могут ли два одинаковых квадрата иметь различную площадь? Во втором парадоксе с коврами мистера Рэнди недостающая площадь имеет правдоподобное объяснение: это дырка, прожженная в ковре.

В отличие от предыдущего парадокса все части примыкают без зазоров, и ни одна часть не перекрывает другую. Куда же исчезает недостающий квадрат со стороной 1?

Чтобы ответить на этот вопрос, приготовим два экземпляра квадрата без дыры. Чем больше получатся квадраты, тем лучше. Один квадрат аккуратно разрежем на части по выкройке, составим из них квадрат с дырой и наложим на него второй квадрат.

Если верхний край и боковые стороны обоих квадратов совпадают, то вы легко заметите, что второй «квадрат» — вовсе не квадрат, а прямоугольник, который выше квадрата на 1/12 дм. Площадь полоски 12х(1/12) дм2, выступающей за пределы квадрата, равна площади «бесследно» исчезнувшей дыры.

Итак, недостающий единичный квадрат найден!

Но отчего вытянулся в высоту «квадрат»? От того, что вершина, которая расположена на гипотенузе части, имеющей форму прямоугольника, не совпадает с узлом квадратной решетки, на которую разграфлена бумага. Зная это, вы сможете построить варианты этого парадокса, в которых избыток или недостаток площади больше 1.

Описанный парадокс известен под названием «квадрат Керри» (фокусника-любителя из Нью-Йорка, открывшего основной принцип подобных парадоксов) и существует во множестве вариантов, включающих не только квадраты, но и треугольники. Тем, кто захочет побольше узнать о квадратах и треугольниках, рекомендую обратиться к моим книгам «Математические чудеса и тайны»[10] и «Математические головоломки и развлечения».[11]


Куда исчезает фигурка?


Самые забавные варианты этой разновидности парадоксов известны в виде картинок, на которых один из персонажей таинственным образом куда-то исчезает.

Парадоксы с исчезающими фигурками вот уже более ста лет используются в США для рекламы различных товаров. В конце прошлого века известный американский изобретатель головоломок Сэм Лойд придумал вариант парадокса, в котором фигурки китайских воинов располагались по кругу. При повороте диска один из воинов исчезал. С тех пор появилось множество вариантов парадоксов с фигурками, расположенными и вдоль прямой, и по кругу.

Подробно парадоксы такого рода рассмотрены в гл. 5 моей книги «Математические чудеса и тайны»[12]

.

Чтобы понять, в чем секрет таинственных исчезновений, начертим на листе бумаги десять линий:



Разрезав лист вдоль пунктирной линии, сдвинем нижнюю часть влево и вниз:



Сосчитаем линии. Их теперь только девять! Спрашивать, какая из десяти линий исчезла, бессмысленно: в действительности 10 исходных линий разрезаются на 18 отрезков, из которых составляются 9 новых линии. Каждая из этих линий на 1/9 длиннее каждой из исходных линий. Если нижнюю часть листа сдвинуть назад, то есть вправо и вверх, возникнут 10 исходных линий, каждая из которых на 1/10 короче любой из тех 9 линий, которые были перед вторым сдвигом.

Принцип, положенный в основу многочисленных вариантов парадоксов с исчезновением и появлением, линий и фигурок, давно известен фальшивомонетчикам. Разрезав 9 долларовых купюр на 18 частей вдоль определенных линий защитной сетки и переставив эти части, мошенники получают 10 купюр.

Подделку легко обнаружить, так как цифры номера на фальшивых купюрах оказываются сдвинутыми.

Дело в том, что во избежание подобной подделки номера на купюрах печатаются у противоположных обрезов на разной высоте — вверху и внизу. В 1968 г. в Лондоне за попытку подделать таким образом 5-фунтовую банкноту фальшивомонетчик был осужден на 8 лет тюремного заключения.


Хищение в банке



Хотите верьте, хотите не верьте, но парадоксы с исчезновением фигур имеют нечто общее с методом, которым некий нечистый на руку программист воспользовался, чтобы совершить хищение в одном крупном банке.



Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг