Читаем Апология математики, или О математике как части духовной культуры полностью

Бесконечное вообще следует — в понятийном аспекте — трактовать как упрощённое представление о конечном, но очень большом. А бывает ли вообще бесконечное количество предметов? Бывает ли оно в физической реальности — этого никто не знает. Количество звёзд во Вселенной — конечно оно или бесконечно? Мнения расходятся, и проверить, кто прав, довольно затруднительно. В реальности же идеальной — да, бывает. Например, бесконечен натуральный ряд, то есть ряд натуральных чисел 1, 2, 3, 4,… Предупредим для ясности, что в этой главе, вплоть до особого распоряжения, никаких других чисел рассматриваться не будет, а потому натуральные числа будут именоваться просто

числами.

Натуральный ряд представляет собой, пожалуй, наиболее простой пример бесконечной совокупности, или, как говорят математики, бесконечного множества. И уже в нём можно наблюдать некоторые парадоксальные явления, в частности — нарушение древней философемы «Целое больше части». На это обратил внимание Галилей, описавший ситуацию с полной отчётливостью и наглядностью. В 1638 году вышла его книга «Беседы и математические доказательства…». Изложение, в духе тогдашнего времени, выглядело как запись бесед, которые в течение шести дней вели между собою вымышленные персонажи. В первый же день была затронута тема бесконечности, в том числе применительно к натуральному ряду. Послушаем, что говорит один из участников беседы, синьор Сальвиати:

«Сальвиати. ‹…› Мне пришёл в голову пример, который я для большей ясности изложу в форме вопросов, обращённых к синьору Симпличио, указавшему на затруднения. Я полагаю, что вы прекрасно знаете, какие числа являются квадратами и какие нет.

Симпличио. Я прекрасно знаю, что квадратами являются такие числа, которые получаются от умножения какого-либо числа на самого себя; таким образом числа четыре, девять и т. д. суть квадраты, так как они получаются от умножения двух и соответственно трёх на самих себя.

Сальвиати. Великолепно. Вы знаете, конечно, и то, что как произведения чисел называются квадратами, так и образующие их, т. е. перемножаемые, числа носят название сторон или корней; другие числа, не являющиеся произведениями двух равных множителей, не суть квадраты. Теперь, если я скажу, что количество всех чисел вместе — квадратов и не квадратов — больше, нежели одних только квадратов, то такое утверждение будет правильным; не так ли?

Симпличио. Ничего не могу возразить против этого.

Сальвиати. Если я теперь спрошу вас, каково число квадратов, то можно по справедливости ответить, что их столько же числом, сколько существует корней, так как каждый квадрат имеет свой корень и каждый корень — свой квадрат; ни один квадрат не может иметь более одного корня и ни один корень — более одного квадрата.

Симпличио. Совершенно верно.

Сальвиати. Но если я спрошу, далее, каково число корней, то вы не станете отрицать, что оно равно количеству всех чисел вообще, потому что нет ни одного числа, которое не могло бы быть корнем какого-либо квадрата; установив это, приходится сказать, что число квадратов равняется общему количеству всех чисел, так как именно таково количество корней, каковыми являются все числа. А между тем ранее мы сказали, что общее количество всех чисел превышает число квадратов, так как ббольшая часть их не является квадратами».

«Что же нужно сделать, чтобы найти выход из такого положения?» — в растерянности спрашивает еще один участник беседы, Сагредо. Возможны два выхода. Первый состоит в том, чтобы отказаться от сравнения бесконечных количеств по их величине и признать, что в отношении двух таких количеств не следует даже и спрашивать, равны ли они, первое ли больше второго, второе ли больше первого, — и то, и другое бесконечно, и этим всё сказано. Такой выход и предлагает Галилей устами Сальвиати. Но возможен и другой выход. Можно предложить общую схему сравнения любых количеств по их величине. В случае конечных количеств эта схема не будет расходиться с нашими привычками. Для количеств бесконечных она тоже, если вдуматься, не будет им противоречить — хотя бы потому, что каких-либо привычек оперирования с бесконечностями у нас нет. Именно этот второй выход и принят в математике. Забегая вперёд, укажем, что если к квадратам добавить сколько угодно не-квадратов, то полученная расширенная совокупность чисел будет равна по количеству исходной совокупности квадратов (эффект Кортасара). Можно, в частности, добавить все не-квадраты и получить тем самым совокупность всех чисел. Тем самым оказывается, что количество всех чисел действительно равно количеству квадратов — хотя квадраты составляют только часть чисел. Это явление — равенство по количеству совокупности и её собственной части — для конечных совокупностей невозможно, для совокупностей же бесконечных возможно, и сама эта возможность может служить одним из определений бесконечности.

Перейти на страницу:

Все книги серии Новая Эврика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука