[
Заключённая в квадратные скобки посылка, очевидно, истинна (0 принадлежит стандартной части, и если
Таким образом, всякая структура, удовлетворяющая аксиомам Пеано, изоморфна N, и, следовательно, эти аксиомы определяют понятие натурального ряда с сигнатурой {0, '}. Вроде бы это обстоятельство противоречит неоднократно делавшемуся нами заявлению, что системы аксиом с таким свойством не может быть.
Однако противоречия нет, и вот почему. Ранее речь шла лишь о свойствах Натурального Ряда, которые можно выразить определёнными языковыми средствами, иными словами, об аксиомах, записанных на определённом языке. В этом языке был лишь один вид переменных – индивидные переменные
Разъяснение, конечно, дано, но вряд ли оно кого-нибудь удовлетворит. Что с того, что на каком-то языке нельзя написать систему аксиом натурального ряда? Это, как говорится, «факт не биографии натурального ряда, а биографии этого языка». Просто-напросто узкий язык плохой, а вот теперь мы нашли хороший, расширенный язык, на котором как раз и возможно выписать адекватные аксиомы натурального ряда.
Однако всё не так просто. Грубо говоря, дело обстоит как раз наоборот: узкий язык «хороший», а расширенный – «плохой».
Попробуем разъяснить ситуацию. Начнём с терминологии. Формулы, в которых все переменные индивидные, называются
Бывают и неэлементарные формулы, но они принадлежат неэлементарному языку. В этом языке допускаются переменные более сложной природы – предикатные переменные валентности 1, значениями которых служат свойства (= одноместные отношения), предикатные переменные валентности 2, значениями которых служат бинарные (= двуместные) отношения и т. п., а также функциональные переменные (значением функциональной переменной валентности 1 может быть любая одноместная операция, такая, скажем, как «следование за», а значением функциональной переменной валентности 2 может быть любая двуместная операция, такая, скажем, как сложение). Аксиома индукции служит примером неэлементарной формулы. Более точно, неэлементарный язык с описанными только что возможностями называется
Казалось бы – и наличие аксиом Пеано это как бы подтверждает – возможна система неэлементарных аксиом 2-го порядка (т. е. аксиом, записанных в виде формул этого неэлементарного языка), определяющая понятие натурального ряда в следующем точном смысле:
1) N является моделью этой системы;
2) всякая модель этой системы изоморфна N.