Читаем Астрономия. Популярные лекции полностью

Почему задача трех тел очень важна? Это задача жизненная: с Земли продолжают запускать космические аппараты на Луну (например, фотографировать обратную сторону Луны), и надо рассчитывать траекторию полета такого космического аппарата. Решают ее только численно, на компьютерах, шаг за шагом. Правда, очень часто можно сделать упрощающие предположения. Например, разумно предположить, что среди этих трех тел только два массивные, а третье по сравнению с ними невесомое, т. е. они его притягивают, а оно на них не влияет. Второе упрощение: пусть все они движутся в одной плоскости, то есть легкое тело летает в орбитальной плоскости первых двух. Третье упрощение: пусть массивные тела относительно своего центра массы движутся по круговым орбитам. И вот когда мы принимаем во внимание все эти упрощения, получается задача, которую уже можно решать аналитически; она называется ограниченной круговой задачей трех тел. Тогда можно перейти в систему координат, связанную с вращением двух массивных тел, чтобы они в этой системе оставались на месте, а вся остальная Вселенная крутилась вокруг них.

Рис. 3.23. В задачи космического аппарата «Луна-3» входило фотографирование Луны с орбиты и последующая передача фотоснимков на Землю.


Но если вращается система координат, то в ней появляются центробежная и кориолисова силы, их надо ввести в эту систему соответствующими слагаемыми в уравнениях. И оказывается, что в такой системе есть 5 точек, где третье — легкое — тело может оставаться неподвижным относительно двух массивных (это означает, что в обычной системе координат оно будет обращаться вокруг центра масс синхронно с ними). Три из этих точек — на соединяющей массивные тела линии — обнаружил еще Эйлер, а две другие — при вершинах равносторонних треугольников — Лагранж, но все их называют точками Лагранжа и обозначают буквой L (рис. 3.24).

Рис. 3.24. Пять точек Лагранжа в системе «Земля — Луна».


Если нанести на плоскость линии равного потенциала (гравитационного плюс центробежного), то на такой картине мы сразу увидим области контроля гравитации одного и другого тела, область их совместного «контроля», а также области всех пяти точек Лагранжа. Лучше смотреть на это в объемном эскизе: для этого надо построить эквипотенциальную поверхность, в которой будет две гравитационные ямы, вокруг которых центробежный потенциал дает скат по всем направлениям, потому что если вы отдалились от массивных тел, то центробежная сила выкинет вас из этой системы. Точки Лагранжа — это точки равновесия, но оно не всегда устойчиво. В линейных точках L1

, L2 и L3 оно вообще неустойчиво: чуть отклонился — и уже не вернешься. А в окрестности треугольных точек L4 и L
5 слабая устойчивость есть лишь при большом отношении масс двух главных объектов — не менее 25 : 1.

Рис. 3.25. Направления действующих сил в окрестности точек Лагранжа системы Солнце — Земля. Во второй точке Эйлера — Лагранжа космический аппарат постоянно виден с ночного полушария Земли.


Тем не менее в природе, да и в технике тоже, все пять точек Лагранжа довольно часто играют большую роль. Луна движется внутри области гравитационного контроля Земли, но не очень далеко от пограничной линии (рис. 3.26), так что устойчивость Луны не слишком велика, она не очень сильно привязана к Земле. С другой стороны, космические аппараты часто запускают в разные точки Лагранжа, потому что там очень удобно «подвесить» аппарат. Так, в точке L1

он будет всегда смотреть на Солнце, а антенна для связи с Землей при этом постоянно будет направлена на Землю, в точке L4 он одновременно будет видеть и Солнце, и Землю с Луной и в то же время находиться подальше от них, т. е. разные точки играют разную роль. Точка L3 — единственная, которая пока не используется, хотя она очень интересна: если туда поместить спутник, то он будет наблюдать ту полусферу Солнца, которую с Земли не видно. Но как с ним связываться? Радиосигнал сквозь Солнце не проходит, поэтому надо будет запускать еще и отдельный ретранслятор.

Рис. 3.26. Поверхности нулевой скорости (эквипотенциальные) в плоской круговой ограниченной (m3 ≪ m1 и m2) задаче трех тел.


Перейти на страницу:

Похожие книги

Воображаемая жизнь (ЛП)
Воображаемая жизнь (ЛП)

Книга 2019 года, в которой двое учёных (профессор физики и профессор астрономии) предлагают читателю совершить воображаемое путешествие по экзопланетам различных типов в поисках жизни на них. Охарактеризованы планеты различных типов - полностью замороженные, водные, с повышенной силой тяжести, в приливном захвате, и т. д. Для каждого типа экзопланет анализируется возможность возникновения жизни, наиболее вероятные места её возникновения и пути её эволюции. Также авторы касаются проблемы жизни в целом, законов природы, которые отвечают за формирование планет и их среды. Отдельные главы книги посвящены анализу возможности возникновения "нестандартных" видов жизни - на основе иных элементов (не углерода), неорганической и искусственной жизни. Книга рассчитана на широкий круг читателей.

Джеймс Трефил , Майкл Саммерс

Астрономия и Космос / Образование и наука