Читаем Астрономия. Популярные лекции полностью

Эквипотенциальная поверхность системы двух массивных тел, проходящая через точку L1, ограничивает две области пространства, контролируемые соответствующим центром притяжения. Их называют полостями Роша, по имени французского математика, который выполнил расчеты. Если легкое тело приближается к окрестности этой точки, то оно будет двигаться по довольно замысловатой траектории (рис. 3.27). Например, мы запустили спутник к Луне, он перескакивает в область контроля Луны, делает там несколько пируэтов, а затем снова оказывается спутником Земли. Но за границы эквипотенциальной поверхности он выйти не может, потому что энергии ему для этого не хватает, он заперт в совместном гравитационном поле двух тел.

Рис. 3.27. Траектория космического аппарата в неинерциальной системе отсчета, в которой два массивных небесных тела неподвижны.


В нашей планетной системе два самых массивных тела — Солнце и Юпитер. В точках Лангранжа этой пары реализовалась интересная ситуация: в них скопилось очень много астероидов. Попадая в эту область относительной устойчивости, астероиды остаются там надолго, на миллионы лет, а уходят оттуда очень медленно, поэтому их концентрация там весьма высока. Эти две группы астероидов постоянно сопровождают Юпитер на его орбите, доказывая, что Лагранж правильно сделал свои вычисления: одна группа (условно названная «Греки») движется на 60° впереди Юпитера, другая («Троянцы») — на 60° позади него, и в каждой по несколько тысяч астероидов (рис. 3.28).

Рис. 3.28. Впереди и позади Юпитера по его орбите летят астероиды, накопившиеся в окрестности точек Лагранжа L4 и L5.

Гравитационная праща

Есть еще одна важная вещь, связанная с задачей трех тел: гравитационный маневр, который часто используют для доразгона космических аппаратов. Например, чтобы забросить зонд к дальним планетам — Нептуну, Урану, Плутону и дальше, — используют гравитационное притяжение встречающейся по пути планеты. В принципе идея та же, что и в обычной механике: если вы катнете маленький мячик навстречу катящемуся тяжелому, при отскоке скорость маленького увеличится — это следствие закона сохранения импульса. То же самое случается, когда планета летит вперед, а зонд, приближаясь к ней, облетает ее и при этом приобретает дополнительный импульс. Чтобы осознать причину этого, можно рассуждать так: находясь на этой планете, мы увидим, что зонд приближается к нам на большой относительной скорости (равной сумме скоростей планеты и зонда), потом он разворачивает свой вектор скорости и удаляется с таким же модулем относительной скорости. Но в неподвижной системе координат получается, что скорость планеты добавилась к нему два раза: сначала на встречном курсе, потом на уходящем.

Рис. 3.29. Космические аппараты «Вояджер». Рисунок: NASA.


Значит, при разумном планировании траектории можно увеличить скорость зонда в пределе на удвоенную орбитальную скорость планеты, хотя удается такое редко. Так, в 1977 г. запустили два космических аппарата, «Вояджер-1» и «Вояджер-2», — очень красивый был эксперимент. Оба зонда облетели Юпитер и Сатурн, получив от этих планет такие толчки (и, кстати, подходящие направления скорости), что и тот и другой вылетели из Солнечной системы. Ракета их так разогнать не могла, именно влияние Юпитера и Сатурна позволило одному сразу покинуть Солнечную систему, а другому по пути еще посетить Уран и Нептун (рис. 3.30). Вот такой грандиозный тур они совершили — а все благодаря точному расчету траектории полета. Кстати, первый зонд запустили без надежды на точный расчет, он посетил только Юпитер и Сатурн, но к Урану и Нептуну не попал. А со вторым уже стало ясно, что можно рискнуть, просто его надо было круче завернуть. Чтобы сильнее повернуть вектор скорости, надо пролететь ближе к планете (чем больше рискуешь, приближаясь на опасное расстояние к планете, тем больше прибавка в скорости при удачном гравитационном маневре). И чтобы она сильнее притягивала, куда, вы думаете, его запустили? Его направили в щель между внутренним кольцом Сатурна и поверхностью планеты. Тогда еще не знали, что это место тоже заполнено веществом, думали, что там пустота. А теперь мы понимаем, что риск был огромный: он там запросто мог обо что-нибудь стукнуться. Но зонду повезло, он беспрепятственно проскочил в эту щель, под действием планеты разогнался, сильно повернул — и дальше полетел куда надо.

Рис. 3.30. Траектории аппаратов «Вояджер-1» и «Вояджер-2» в Солнечной системе с отметками дат.

Траектория Луны

Перейти на страницу:

Похожие книги

Воображаемая жизнь (ЛП)
Воображаемая жизнь (ЛП)

Книга 2019 года, в которой двое учёных (профессор физики и профессор астрономии) предлагают читателю совершить воображаемое путешествие по экзопланетам различных типов в поисках жизни на них. Охарактеризованы планеты различных типов - полностью замороженные, водные, с повышенной силой тяжести, в приливном захвате, и т. д. Для каждого типа экзопланет анализируется возможность возникновения жизни, наиболее вероятные места её возникновения и пути её эволюции. Также авторы касаются проблемы жизни в целом, законов природы, которые отвечают за формирование планет и их среды. Отдельные главы книги посвящены анализу возможности возникновения "нестандартных" видов жизни - на основе иных элементов (не углерода), неорганической и искусственной жизни. Книга рассчитана на широкий круг читателей.

Джеймс Трефил , Майкл Саммерс

Астрономия и Космос / Образование и наука