Читаем Беседы об информатике полностью

Вернемся к рисунку 7 и предположим, что надо изгнать эти 104 электронов для того, чтобы образовать канал. Реальные значения токов, которые протекают в подобных структурах, имеют порядок микроампер, то есть 10–6 ампера. Заряд 10

–15 кулона переносится током в 10–6 ампера за 10–9 секунды. Это и есть теоретическая оценка для времени срабатывания одного структурного элемента интегральной схемы. Поскольку функциональный элемент содержит несколько структурных, эта величина должна быть соответственно увеличена. У упоминавшейся японской схемы памяти на поиск и выдачу нужного участка записи затрачивается 87 наносекунд. В части быстродействия искусственные технические системы определили природу примерно в миллион раз.

Сколько энергии потребляют живые клетки и сколько интегральные схемы? Потребление энергии живой клеткой в расчете на один структурный элемент примерно в сто тысяч раз меньше, чем в интегральных схемах. Этого и следовало ожидать, исходя из количества атомов, приходящихся на один структурный элемент в живых и искусственных системах. Но, пожалуй, важнее другое. В интегральных схемах где находится источник энергии? Он расположен вне схемы. К каждому из функциональных элементов энергия подводится по проводникам. Проводники занимают много места, что, естественно, снижает степень интеграции. Но опять же главное не в том. Сложная разветвленная сеть питания (ведь энергию надо подвести к каждому функциональному элементу) резко снижает надежность системы. Уже сегодня при современной степени интеграции система питания оказывается причиной подавляющего большинства неисправностей и отказов.

Иначе решена эта проблема у природы. Источники питания (а ими в данном случае являются молекулы АТФ) распределены в цитоплазме клетки. Функциональные элементы как бы плавают в энергетической ванне и черпают энергию непосредственно из окружающей среды без каких-либо подводящих путей. Возможно, именно здесь нашим конструкторам имеет смысл позаимствовать у природы решение проблемы энергоснабжения.


Учимся говорить


Живые клетки размножаются делением. Все начинается с того, что спираль, состоящая из двух молекул ДНК, расплетается. Под влиянием фермента полимеразы к каждой молекуле пристраивается вторая, причем соблюдаются правила комплементарности. Вокруг каждой из образовавшихся таким образом спиралей достраивается ядро, клетка делится пополам, и каждая половина, имея собственное ядро, превращается в полноценную клетку.

Можно ли наблюдать нечто похожее у интегральных схем? Конечно. Более того, в интегральных схемах все происходит гораздо эффективнее. Процесс создания интегральной схемы состоит в том, что исходная пластинка кремния прикрывается фольгой-маской, нагревается в атмосфере, состоящей из паров некоторого вещества. Затем маска заменяется. Снова нагрев, теперь уже в парах другого вещества, и так далее вплоть до завершения.

Описанный технологический процесс не единственный. Существует, например метод ионной имплантации. В чем он состоит? Атомы примеси внедряются в кристалл в результате того, что в нужное место пластины направляется пучок соответствующих ионов.

Все это так, но и первый метод достаточно распространен и удобен, и у нас имеются все основания использовать его в качестве примера.

Интегральной схеме нет нужды делиться. С помощью одного и того же комплекта масок изготовляют большое количество интегральных схем. Ну а если маски изнашиваются? Всегда можно изготовить новый комплект на основании чертежа, выполненного на бумаге.

Раз уж мы заговорили о технологическом процессе изготовления интегральных схем, важно отметить следующее. Сам процесс в настоящее время полностью автоматизирован. Сырье для каждой интегральной схемы затрачивается в ничтожных количествах, измеряемых миллиграммами. Поэтому изготовление интегральной схемы практически ничего не стоит (порядка нескольких рублей, из которых большая часть затрачивается на изготовление корпуса и выводов).

Иное дело маски! Полный цикл изготовления маски, а начинается он, собственно, с разработки схемы, то есть с создания принципиально нового физического прибора, и заканчивается крохотным, площадью в несколько десятков квадратных миллиметров, кусочком металлической фольги с десятком миллионов отверстии, разумеется, обходится очень дорого. Это могут быть десятки миллионов рублей. Получается парадоксальная ситуация. Цена интегральной схемы оказывается обратно пропорциональной общему количеству выпущенных аналогичных схем. Стоимость маски равномерно распределяется по всем выпущенным изделиям.

То же самое имеет место в полиграфии. Клише газетного рисунка может обойтись в несколько тысяч рублей, но поскольку с этого клише делаются миллионы отпечатков, газета продается за несколько копеек.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки