Глава 2. Человек, который обуздал бесконечность
Примерно через двести лет после того, как Зенон задумался о природе пространства, времени, движения и бесконечности, еще один мыслитель счел бесконечность неотразимой. Его звали Архимед[43]
. Мы уже встречались с ним, когда говорили о площади круга, но он легендарен и по многим другим причинам.Начнем с того, что о нем ходит много забавных историй[44]
. В некоторых он предстает этаким чудаком-математиком. Например, историк Плутарх рассказывает[45], что Архимед настолько увлекался геометрией, что «забывал о пище и уходе за телом»[46],[47]. (Это определенно верно. Для многих из нас, математиков, еда и личная гигиена не входят в список приоритетов.) Из-за этого, как говорит Плутарх, ученого даже насильно заставляли принимать ванну[48]. Забавно, что он занимался этим с такой неохотой, учитывая, что именно с купанием связана история, которую знают все. По словам римского архитектора Витрувия[49], Архимед был настолько возбужден внезапным озарением во время купания, что выскочил из ванны и побежал голышом по улице, крича: «Эврика!» («Нашел!»).Другие истории рисуют его магом военного искусства, воином-ученым – настоящим отрядом смерти из одного человека. Согласно этим легендам, когда его родной город Сиракузы в 212 году до нашей эры осадили римляне, Архимед – к тому времени уже почти 70-летний старик – помогал защищать город, применяя свои знания о рычагах и блоках для создания фантастического оружия – «боевых машин», таких как крюки и гигантские краны, которые поднимали римские корабли из воды и стряхивали с них моряков, как вытряхивают песок из обуви. Плутарх описывал эту ужасающую сцену так: «Нередко взору открывалось ужасное зрелище: поднятый высоко над морем корабль раскачивался в разные стороны до тех пор, пока все до последнего человека не оказывались сброшенными за борт или разнесенными в клочья, а опустевшее судно разбивалось о стену или снова падало на воду, когда железные челюсти разжимались»[50]
,[51].Если говорить о более серьезных вещах, то все школьники и инженеры помнят закон Архимеда (на тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости) и закон рычага (предметы на противоположных плечах рычага уравновешиваются, если их массы обратно пропорциональны расстояниям от точки опоры). Обе идеи имеют бесчисленные практические приложения. Закон Архимеда объясняет, почему одни объекты плавают, а другие – нет. Он также лежит в основе теории кораблестроения, теории остойчивости судов и проектирования морских нефтебуровых платформ. А принцип рычага вы, сами того не сознавая, применяете каждый раз, когда используете ножницы для ногтей или лом.
Возможно, Архимед был потрясающим конструктором боевых машин и, несомненно, блестящим ученым и инженером, но по-настоящему в пантеон великих его вводят достижения в математике. Он проложил путь к интегральному исчислению. Глубочайшие идеи, содержащиеся в его работах, больше не встречались почти два тысячелетия. Сказать, что он опередил свое время, – значит ничего не сказать. Кто-нибудь опережал свое время
В работах ученого постоянно появляются две стратегии. Первая – активное использование принципа бесконечности. Чтобы изучать загадки кругов, сфер и прочих криволинейных форм, Архимед всегда аппроксимировал их с помощью прямолинейных форм, состоящих из прямых и кусков плоскостей, похожих на грани драгоценных камней. Воображая все большее количество частей и делая их все меньше по размеру, он подгонял свои приближения все ближе к истине, подходя к пределу с бесконечным количеством частей. Такая стратегия требовала филигранного обращения с суммами и головоломками, поскольку для получения своих выводов ему приходилось складывать множество чисел и частей.
Вторая примечательная стратегия – сочетание математики с физикой, идеального с реальным. В частности, он объединял геометрию, науку о формах, с механикой, изучающей движение и силы. Иногда он использовал геометрию, чтобы пролить свет на механику; иногда ход мыслей бывал обратным – механические соображения рождали идеи для чистых форм. Искусно используя обе стратегии, Архимед смог глубоко проникнуть в тайну кривых.
Когда я иду на работу или гуляю вечером с собакой, шагомер в моем iPhone отслеживает пройденное расстояние. Вычисления просты: приложение оценивает длину шага, исходя из моего роста, считает количество сделанных шагов, а затем перемножает эти два числа. Пройденное расстояние равно длине шага, умноженной на количество шагов.
Архимед использовал аналогичную идею для вычисления длины окружности и оценки числа π[52]
. Представьте, что окружность – это дорожка для ходьбы. Путь будет выглядеть примерно так: