Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Архимед углубился в загадку кривых, снова руководствуясь принципом бесконечности, в своем труде под названием «Квадратура параболы»[57]. Парабола – это кривая, которую описывает мяч при броске или струйка воды из фонтана. На самом деле эти дуги в реальном мире можно считать параболами только приближенно. Согласно Архимеду, настоящая парабола получается при сечении конуса плоскостью[58]. Представьте себе нож, который разрезает колпак или конический бумажный стаканчик; при разрезе могут получиться разные виды кривых – в зависимости от того, под каким углом нож будет резать конус. Разрез параллельно основанию конуса образует окружность.



Если провести разрез немного наклонно, получится эллипс.



Если угол разреза будет таким же, как у самого конуса, получится парабола.



Если посмотреть на плоскость разреза, то парабола выглядит как изящная симметричная кривая. Линия симметрии называется осью параболы.



В своем труде Архимед поставил перед собой задачу вычислить площадь сегмента параболы. Говоря современным языком, сегментом параболы называется криволинейная область, лежащая между параболой и пересекающей ее прямой.



Термином «квадратура» называется определение площади какой-либо фигуры (изначально – построение квадрата, равновеликого этой фигуре), то есть поиск способа выразить ее через более простые формы – квадрат, треугольник, прямоугольник и прочие прямолинейные фигуры.

Архимед использовал потрясающую стратегию. Он представил сегмент параболы как бесконечное множество треугольных черепков, склеенных вместе, словно осколки разбитого глиняного горшка.



Эти осколки образуют бесконечную иерархию размеров: один большой треугольник, два поменьше, четыре еще меньше и так далее. Ученый планировал найти их площади, а затем сложить их и вычислить интересующую его площадь. Требовался калейдоскопический скачок художественного воображения, чтобы представить плавный сегмент в виде мозаики из угловатых кусков. Если бы Архимед был художником, он стал бы первым кубистом.

Для реализации своей стратегии Архимеду требовалось вычислить площадь всех осколков. Но как точно определить эти осколки? Ведь параболический сегмент можно разбивать на куски бесконечным числом способов – так же как бесконечным числом способов можно разбить тарелку на части. Самый большой осколок может выглядеть вот так, или так, или вот так:



Ученому пришла в голову блестящая идея. Блестящая потому, что она создавала закономерность, которую можно было сохранять на всех уровнях иерархии. Он представил, как секущая линия в основании сегмента скользит вертикально, сохраняя свой наклон, пока не будет соприкасаться с параболой в единственной точке неподалеку от вершины.



Такая особая точка называется точкой касания. Она определяет третью вершину большого треугольника, где две другие – точки пересечения секущей и параболы.

Архимед использовал эту же тактику для определения треугольников на каждом этапе в иерархии. Например, на втором этапе треугольники выглядели так:



Обратите внимание, что теперь роль наклонной линии, пересекавшей треугольник на предыдущем этапе, играют стороны большого треугольника.

Затем Архимед использовал известные геометрические факты о параболах и треугольниках, чтобы узнать, как площади треугольников одного уровня связаны с площадью треугольников предыдущего уровня. Он доказал, что площадь каждого нового треугольника составляет 1/8 площади породившего его треугольника. Таким образом, если считать, что площадь первого, самого крупного, треугольника 1 (пусть он будет нашей единицей площади), то площадь двух дочерних треугольников будет 1/8 + 1/8 = 1/4.



На каждом следующем этапе справедливо то же правило: дочерние треугольники всегда составляют в сумме четверть площади от родительского. Следовательно, общая площадь сегмента параболы, состоящая из всего бесконечного количества осколков, должна равняться



В этом бесконечном ряду каждый член вчетверо меньше предыдущего.

Существует простой способ вычислить сумму членов такого ряда, известного как геометрическая прогрессия. Хитрость состоит в том, чтобы избавиться от бесконечного числа слагаемых. Для этого умножим обе части уравнения на 4 и вычтем из получившегося равенства исходное. Смотрите: умножение всех членов ряда на 4 дает:



Чудо происходит между предпоследней и последней строками. В предпоследней строке, подобно фениксу, возродилось выражение для исходной площади: и поэтому мы получаем

4 × Площадь = 4 + Площадь.

Вычитая из обеих частей величину Площадь, получаем 3 × Площадь = 4, откуда Площадь = 4 / 3. Другими словами, площадь сегмента параболы составляет 4 / 3 от площади самого большого треугольника.


Рассуждение о сыре

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература