Каждый шаг представлен коротким отрезком. Умножив число шагов на длину одного отрезка, мы можем оценить длину пути. Конечно, это всего лишь оценка, потому что окружность на самом деле состоит не из прямых отрезков, а из дуг. Заменяя каждую дугу отрезком, мы слегка сокращаем путь. Поэтому такое приближение
Архимед проделал ряд подобных вычислений, начав с пути из шести шагов, то есть с правильного шестиугольника[53]
.Это был удобный базовый лагерь перед штурмом более сложных вычислений. Преимущество шестиугольника в том, что его периметр – сумму длин всех шести сторон – вычислить очень просто. Он в шесть раз больше радиуса круга. Почему? Потому что шестиугольник состоит из шести равносторонних треугольников, длина сторон которых равна радиусу круга.
Шесть сторон таких треугольников образуют периметр шестиугольника.
Получается, периметр в шесть раз больше радиуса, то есть
Это рассуждение дало Архимеду нижнюю границу для числа, которое мы называем
Таким образом, с помощью шестиугольника можно определить, что π > 3.
Конечно, шесть – это смехотворно малое число шагов, и получившийся шестиугольник – очень грубая карикатура на окружность, но для Архимеда он был всего лишь началом. Выяснив все, что мог дать ему шестиугольник, он уменьшил длину шагов, но увеличил их количество. Он добавил средние точки всех дуг и вместо одного шага стал делать два.
Он, как одержимый, продолжал делать так снова и снова, перейдя от шести шагов к 12, потом к 24, 48 и 96, вычисляя периметр получающихся многоугольников с точностью, вызывающей мигрень.
К сожалению, по мере уменьшения длины отрезков стало все труднее вычислять их длину, поскольку ему приходилось постоянно применять теорему Пифагора, а для этого требовалось находить квадратные корни – чертовски сложная вещь, когда приходится считать вручную. Кроме того, чтобы получить не только оценку снизу, но и сверху, Архимед использовал второй многоугольник – описанный вокруг окружности; его периметр был больше, чем длина окружности.
Я хочу сказать, что вычисление Архимедом числа π было героическим подвигом – и с логической, и с арифметической точки зрения. В итоге, использовав 96-угольник, вписанный в круг, и 96-угольник, описанный около круга, он доказал, что число π больше, чем 3 + 10/71, и меньше, чем 3 + 10/70.
Забудьте на минуту о математике. Просто насладитесь этим результатом на визуальном уровне:
Неизвестное и вечно непостижимое число π оказалось зажато в тиски между двумя почти одинаковыми числами, отличающимися только знаменателями 70 и 71. Одно из полученных граничных значений – число 3 + 10/70 = 22/7 – стало знаменитым приближением для π, знакомым всем школьникам; к сожалению, многие ошибочно считают его самим числом π.
Метод, который использовал Архимед (он основывается на более ранних работах греческого математика Евдокса), сегодня известен как метод исчерпывания, когда неизвестное число π оказывается зажатым между двумя известными числами. С каждым удвоением границы сближаются, оставляя числу π все меньше места.
Окружности – это простейшие кривые в геометрии. Тем удивительнее, что определение их количественных характеристик выходит за ее рамки. Например, вы не найдете упоминания о числе π в «Началах» Евклида, написанных за одно-два поколения до Архимеда. Вы найдете там доказательство (методом исчерпывания), что отношение площади круга к квадрату его радиуса одинаково для всех кругов, но ни малейшего намека на то, что это универсальное число близко к 3,14. Такое упущение Евклида было сигналом, что тут нужно что-то более глубокое. Чтобы разобраться с числовым значением π, потребовалась новая математика, которая бы могла работать с криволинейными формами. Как измерить длину кривой, площадь криволинейной фигуры или объем криволинейного тела? Эти актуальные вопросы увлекли Архимеда и позволили сделать первые шаги по направлению к тому, что мы сейчас именуем интегральным исчислением. Число π было его первым триумфом.
Современным умам может показаться странным, что число π не появляется в формуле Архимеда для площади круга,