Работая независимо друг от друга, каждый из них заметил, что любое линейное уравнение (то есть уравнение, где переменные x
и y появляются только в первой степени) дает прямую линию на координатной плоскости. Такая связь между линейными уравнениями и прямыми предполагала возможную связь между нелинейными уравнениями и кривыми. В линейное уравнение вроде y = 200x переменные x и y входят в первой степени, а не возводятся во вторую, третью и любую более высокую степень. Ферма и Декарт поняли, что в ту же игру можно играть с другими степенями и уравнениями. Они могли бы составить любое уравнение, какое пожелают, сделать с x и y все что угодно – возвести одну переменную в квадрат, а другую в куб, перемножить их, сложить, да все что заблагорассудится, – а затем интерпретировать результат как кривую. С определенным везением она может оказаться интересной, возможно, даже такой, которую никто никогда не представлял, а Архимед никогда не изучал. Любое уравнение с x и y становилось новым приключением. Одновременно изменялась точка зрения: вместо того чтобы смотреть на кривую, вы начинали с уравнения и смотрели, какого рода кривую оно дает. Пересадите геометрию на заднее сиденье и дайте управлять алгебре.Ферма и Декарт начали с рассмотрения квадратных уравнений. В них, кроме констант (например, 200) или линейных членов x
и x2, должны быть переменные во второй степени, то есть квадратичные члены, такие как y, xy или y2. Возведение в квадрат традиционно интерпретировалось как поиск площади, то есть x2 означало площадь квадрата со стороной x. В древности площадь считалась величиной, принципиально отличной от длины или объема. Однако для Ферма и Декарта x2 было всего лишь еще одним действительным числом; это означало, что его можно отобразить на числовой прямой – ровно так же, как x, x3 или любую иную степень x.Сегодня предполагается, что даже школьники умеют строить графики уравнений наподобие y
= x2, и соответствующая кривая оказывается параболой. Примечательно, что все уравнения, содержащие квадратичные члены по x и y, но не включающие члены более высоких степеней, дают кривые только четырех возможных типов: параболы, эллипсы, гиперболы и окружности. Это все. (Если не считать некоторых вырожденных случаев, когда появляются прямые, точки или графика нет вообще, но эти редкие странности мы можем смело игнорировать.) Например, квадратное уравнение xy = 1 дает гиперболу, x2 + y2 = 4 – окружность, а x2 + 2y2 = 4 – эллипс. Даже такая страшная на вид зависимость, как x2 + 2xy + 2y2 + x + 3y = 2 должна быть одним из четырех вышеуказанных вариантов. Оказывается, это парабола.
Ферма и Декарт первыми обнаружили это замечательное соответствие: квадратные уравнения относительно x
и y представляют собой алгебраические аналоги конических сечений греков – четырех видов кривых, получающихся при сечении конуса под различными углами. Здесь, на новой арене Ферма и Декарта, вновь, подобно призракам из тумана, вынырнули классические кривые.Вместе лучше
Новообретенная связь между алгеброй и геометрией оказалась благом для обеих областей. Каждая могла помочь компенсировать недостатки другой. Геометрия обращалась к правому полушарию мозга. Она была интуитивно понятной и наглядной, а истинность утверждений часто была видна с первого взгляда. Однако она требовала определенной изобретательности. В случае геометрии нередко не было ни единого намека, с чего начинать доказательство. Для этого требовались гениальные идеи.
Алгебра же была систематической. С уравнениями можно было разбираться спокойно, почти бездумно: вы могли добавить по одинаковой величине к их обеим частям, сократить слагаемые, выразить относительно неизвестной величины и выполнить дюжину других процедур и алгоритмов по стандартным рецептам. Алгебраические процессы могут успокаивать, как вязание. Но при этом алгебра страдала от пустоты. Ее символы были пусты. Они ничего не означали, пока им не придавали какое-то значение. Нечего было представлять наглядно. Алгебра была левополушарной и механической.
Однако вместе алгебра и геометрия были неудержимы. Алгебра дала геометрии систему. Вместо изобретательности теперь требовалось упорство. Она превращала сложные вопросы, нуждающиеся в понимании, в простые, хотя и трудоемкие вычисления. Использование символов освободило разум и сэкономило время и энергию.
Со своей стороны, геометрия придала алгебре смысл. Уравнения перестали быть бесплодными; теперь они воплощали извилистые геометрические формы. Как только уравнения стали рассматривать с точки зрения геометрии, появился целый новый континент кривых и поверхностей. Пышные джунгли геометрической флоры и фауны ждали, когда их обнаружат, каталогизируют, классифицируют и анатомируют.
Ферма против Декарта