На восьмидесяти метрах ямайский спринтер посмотрел вправо, чтобы взглянуть на соперников. Поняв, насколько сильно их опередил, он заметно замедлился, опустил руки и хлопнул себя по груди, пересекая финишную черту. Одни комментаторы восприняли это как хвастовство, другие – как проявление радости, но в любом случае Болт явно не ощущал потребности мчаться в конце изо всех сил, что привело к спекуляциям на тему, насколько быстрее он мог бы бежать. Как бы то ни было, даже с такой жестикуляцией (и развязанными шнурками) он установил новый мировой рекорд – 9,69 секунды. Его критиковали за неспортивное поведение и неуважение, но Болт и не думал ни о чем подобном. Позднее он говорил репортерам: «Это всего лишь я. Люблю веселиться и просто быть расслабленным»[192]
.WENN Ltd / Alamy
Как быстро он бежал? Ну, 100 метров за 9,69 секунды означает скорость 100 / 9,69 = 10,32 метра в секунду. В более привычных единицах это 37 километров в час. Однако это его
Более подробную информацию можно получить из его промежуточного времени, зарегистрированного через каждые 10 метров дорожки стадиона. Первые 10 метров он пробежал за 1,83 секунды, что соответствует средней скорости 5,46 метра в секунду. Самыми быстрыми отрезками были 50–60, 60–70 и 70–80 метров. Каждый из этих 10-метровых отрезков он промчался за 0,82 секунды, то есть со средней скоростью 12,2 метра в секунду. Наконец, на последних 10 метрах, когда он расслабился и сбавил скорость, он замедлился до средней скорости 11,1 метра в секунду.
Человеческие существа плохо воспринимают числа, но хорошо научились распознавать закономерности, так что вместо того чтобы разглядывать числа, как мы только что делали, представим их наглядно. На следующем графике показано время, за которое ямайский спринтер последовательно преодолевал 10, 20, 30 метров и так далее – вплоть до результата 9,69 секунды, с которым он пересек финишную черту – отметку 100 метров.
Я соединил точки отрезками, чтобы глазам их легче было воспринимать, но имейте в виду, что реальные данные здесь только точки. Вместе точки и отрезки между ними образуют ломаную линию. Наклоны этих отрезков меньше всего слева, что соответствует самой низкой скорости Болта в начале забега. По мере движения вправо они изгибаются вверх, а значит, бегун ускоряется, а затем составляют практически прямую линию, указывающую на высокий и стабильный темп бега, который спринтер поддерживал б
Вполне естественно задаться вопросом, в какой момент он двигался с самой большой скоростью и в каком месте дистанции это происходило. Мы знаем, что самая высокая
Здесь мы ищем способ измерить мгновенную скорость спринтера. Это понятие кажется почти парадоксальным. В любой момент времени Усэйн Болт располагался точно в одном месте, застыв, как на мгновенном снимке. Как можно говорить о его скорости в такой момент? Скорость может относиться только к некоторому промежутку времени, а не к отдельному мгновению.
Загадка мгновенной скорости восходит к истории математики и философии – примерно к 450 году до нашей эры, когда Зенон предлагал свои устрашающие парадоксы. Вспомните, что в апории об Ахиллесе и черепахе философ утверждал, что быстрый бегун никогда не обгонит медленного, хотя Болт и опроверг это тем вечером в Пекине. А в апории «Стрела» Зенон утверждал, что стрела в полете не может двигаться. Математики до сих пор окончательно не определились, что именно пытался донести до нас Зенон своими парадоксами, но я предполагаю, что его, как и Аристотеля и других греческих философов, беспокоили тонкости, связанные с понятием мгновенной скорости. Их беспокойство может объяснить, почему греческие математики всегда мало говорили о движении и изменении. Подобно бесконечности, эти неприятные темы, казалось, были изгнаны из вежливых бесед.
Спустя две тысячи лет после Зенона основатели дифференциального исчисления разгадали загадку мгновенной скорости. Их интуитивно понятное решение сводилось к определению мгновенной скорости как предела, а точнее, как предел средней скорости, вычисленной за все более короткие и короткие интервалы времени. Это похоже на то, что мы делали, когда увеличивали участок параболы. Тогда мы аппроксимировали все меньшие и меньшие кусочки кривой с помощью прямой, а затем задавались вопросом, что происходит в пределе при бесконечном увеличении. Изучив предельное значение наклона прямой, мы смогли определить производную в конкретной точке плавно изогнутой параболы.