Читаем Биология. В 3-х томах. Т. 3 полностью

Большинство многоклеточных животных и растений начинает свой жизненный цикл с одной клетки — зиготы. Из этой клетки в результате многократных митотических делений получается сложный, высокодифференцированный организм. Процесс этот называют ростом и развитием, и он включает также дифференцировку. В результате дифференцировки каждая клетка приобретает определенную структуру, позволяющую ей выполнять ряд специфических функций более эффективно, и это является одним из важнейших событий, происходящих в процессе развития. Почему клетки, принадлежащие одному организму, образовавшиеся путем повторных клеточных делений и содержащие один и тот же генетический материал, отличаются таким широким разнообразием, типичным для многоклеточных организмов? Причина этого далеко не ясна, однако она, несомненно, связана с индукцией и репрессией генов при участии механизмов, вероятно, сходных с описанными в предыдущем разделе. Судя по имеющимся данным" дифференцировка связана с различными взаимодействиями трех факторов — ядра, цитоплазмы и окружающей среды.

22.8.1. Роль ядра

Значение ядра как хранилища генетического материала и его главная роль в определении фенотипических признаков были установлены давно. Немецкий биолог Хаммерлинг одним из первых продемонстрировал важнейшую роль ядра. Он выбрал в качестве объекта своих экспериментов необычайно крупную одноклеточную (или неклеточную) морскую водоросль Acetabularia. Существуют два близко родственных вида A. mediterranea

и A. crenulata, различающиеся только по форме "шляпки" (рис. 22.33).

Рис. 22.33. Морская водоросль Acetabularia, использованная Хаммерлингом для того, чтобы продемонстрировать роль ядра. А. Два вида Acetabularia. Б. Эксперименты, проведенные Хаммерлингом


В ряде экспериментов, в том числе таких, в которых "шляпку" отделяли от нижней части "стебелька" (где находится ядро), Хаммерлинг показал, что для нормального развития шляпки необходимо ядро. В дальнейших экспериментах, в которых соединяли нижнюю, содержащую ядро часть одного вида с лишенным ядра стебельком другого вида, у таких химер всегда развивалась шляпка, типичная для того вида, которому принадлежало ядро.

При оценке этой модели ядерного контроля следует, однако, учитывать примитивность организма, использованного в качестве объекта. Метод пересадок был применен позднее в экспериментах, проведенных в 1952 г. двумя американскими исследователями, Бриггсом и Кингом, с клетками лягушки Rana pipiens. Эти авторы удаляли из неоплодотворенных яйцеклеток ядра и заменяли их ядрами из клеток поздней бластулы, уже проявлявших признаки дифференцировки. Во многих случаях из яиц — реципиентов развивались нормальные взрослые лягушки.

22.7. О чем свидетельствуют результаты описанных выше экспериментов?

22.8.2. Роль цитоплазмы

Дальнейшие сведения о роли цитоплазмы дали эмбриологические исследования. У очень многих организмов цитоплазма яйца выглядит неоднородной уже на самой ранней стадии зародышевого развития: в ней можно различить слои и зоны, создаваемые неравномерным распределением зернистого или по-разному окрашенного материала. У тех видов, у которых первые деления дробления происходят в вертикальной плоскости, как, например, у амфибий, каждый из образующихся при этом бластомеров, если отделить его от других, обычно дает начало целому нормальному эмбриону. У других видов, например у моллюсков, изолированные бластомеры не способны к нормальному развитию и образуют только часть зародыша. В первом случае разные зоны цитоплазмы распределяются между обоими бластомерами поровну, тогда как во втором они распределены неравномерно. Яйца, в которых цитоплазма дифференцирована, так что разные их участки всегда дают начало определенным частям зародыша, называют мозаичными. Тем не менее во всех случаях (за редкими исключениями) ядра всех клеток содержат одинаковые наборы генов. Следует поэтому полагать, что различие в дальнейшей судьбе эмбриональных клеток — результат какого-то влияния на гены со стороны цитоплазмы.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука