Приближённый расчёт прямого бруса на действие И. в упругой стадии производится в предположении, что поперечные сечения бруса, плоские до И., остаются плоскими и после него (гипотеза плоских сечений); полагают также, что продольные волокна бруса при И. не давят друг на друга и не стремятся оторваться одно от другого. При плоском И. в поперечных сечениях бруса возникают нормальные и касательные напряжения. Нормальные напряжения s
в произвольном волокне какого-либо поперечного сечения бруса (рис. 2
), лежащем на расстоянии y
от нейтральной оси, определяются формулой где Mz
— изгибающий момент в сечении, a Iz
—
момент инерции поперечного сечения относительно нейтральной оси. Наибольшие нормальные напряжения возникают в крайних волокнах сечения момент сопротивления поперечного сечения). Касательные напряжения t
, возникающие при поперечном И., определяются по формуле Д. И. Журавского где Qy
— поперечная сила в сечении, Sz
—
статический момент относительно нейтральной оси части площади поперечного сечения, расположенной выше (или ниже) рассматриваемого волокна, b—
ширина сечения на уровне рассматриваемого волокна. Характер изменения изгибающих моментов и поперечных сил по длине бруса обычно изображается графиками-эпюрами, по которым определяются их расчётные значения. Под влиянием И. ось бруса искривляется, ее кривизна определяется выражением где r
— радиус кривизны оси изогнутого бруса в рассматриваемом сечении; Е —
модуль продольной упругости материала бруса. В случаях малых деформаций кривизна приближённо выражается второй производной от прогиба V
, а поэтому между координатами изогнутой оси и изгибающим моментом существует дифференциальная зависимость называемая дифференциальным уравнением оси изогнутого бруса. Решением этого уравнения определяется упругая линия
балки (бруса). Расчёт бруса на И. с учётом пластических деформаций приближённо производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всём поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала sт
, при этом кривизна бруса неограниченно возрастает. Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле в которой S1
и S2
— статические моменты сжатой и растянутой частей сечения относительно нейтральной оси. Лит.
см. при ст. Сопротивление материалов
. Л. В. Касабьян.
Рис. 2. Чистый изгиб прямого бруса в упругой стадии: а — элемент бруса; б — поперечное сечение; в — эпюра нормальных напряжений.
Рис. 1. Изгиб бруса: а — чистый: б — поперечный; в — продольный; г — продольно-поперечный.
Изгибание
Изгиба'ние
(математическое), деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной. Наглядный пример И. — свёртывание листа бумаги в цилиндр или конус (при условии, что бумага нерастяжима; поэтому длина каждой дуги любой линии, проведённой на бумаге, остаётся неизменной). Напротив, раздувание шарика, изготовленного из тонкой резиновой плёнки, представляет собой пример деформации, которая не будет И. И. поверхностей изучается в дифференциальной геометрии
. Одна из теорем этой области — теорема Гаусса: при И. поверхности произведение её главных кривизн (полная кривизна) в каждой точке остаётся неизменным. Из этой теоремы следует, что никакой кусок сферы при помощи И. нельзя превратить в кусок сферы другого радиуса или придать ему плоскую форму. В современной дифференциальной геометрии особенно важное место занимают исследования возможности или невозможности И. различных поверхностей. Доказано, что каждая замкнутая выпуклая поверхность (например, целая сфера, целый эллипсоид) не может изгибаться; если же из такой поверхности вырезать сколь угодно малый кусок, то оставшаяся часть будет допускать И. Доказательство получено благодаря работам немецкого математика С. Кон-Фоссена и советских математиков А. Д. Александрова и А. В. Погорелова. Исследование И. поверхности имеет важное значение для теории тонких оболочек в механике. Лит.:
Кон-Фоссен С. Э., Изгибаемость поверхностей в целом, «Успехи математических наук», 1936, в. 1; Ефимов Н. В., Качественные вопросы теории деформаций поверхностей, там же, 1948, т. 3, в. 2; Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Погорелов А. В., Изгибание выпуклых поверхностей, М. — Л., 1951. Изгибные волны