В далеком 1687, когда Ньютон предложил свой универсальный закон гравитации, он, естественно, сделал строгое утверждение о количестве пространственных измерений. Ньютон не говорил просто, что сила притяжения между двумя объектами становится слабее, когда расстояние между ними становится больше. Он предложил формулу, закон обратного квадрата, которая точно описывает, как будет уменьшаться гравитационное притяжение, когда два объекта разделяются. В соответствии с этой формулой, если вы удваиваете дистанцию между двумя объектами, их гравитационное притяжение упадет в четыре раза (то есть в 22
раз); если вы утроите расстояние, оно упадет в девять раз (то есть в 32 раз); если вы увеличите расстояние в четыре раза, оно упадет в 16 раз (то есть в 42 раз); и в общем случае гравитационная сила падает пропорционально квадрату расстояния между объектами. Как стало достаточно очевидно за последние несколько сотен лет, эта формула работает.Но почему сила зависит от квадрата расстояния? Почему сила не падает пропорционально кубу расстояния (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 8) или четвертой степени (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 16), или вообще, даже более просто, почему гравитационная сила между двумя объектами не падает прямо пропорционально расстоянию (так что, если бы вы удвоили дистанцию, сила бы уменьшилась на фактор 2)? Ответ прямо связан с числом измерений пространства.
Один из способов увидеть это таков: подумать о том, какое количество гравитонов эмитируется и поглощается двумя объектами в зависимости от расстояния, или подумать о том, как кривизна пространства времени, которую ощущает каждый объект, уменьшается с ростом расстояния между ними. Но поступим проще, с использованием более старого подхода, который быстро и интуитивно понятно приведет нас к правильному ответу. Нарисуем Рис. 13.4а, который схематически иллюстрирует гравитационное поле, производимое массивным объектом, – скажем, Солнцем, – почти как на Рис. 3.1 схематически иллюстрировалось магнитное поле, производимое бруском магнита. Тогда как линии магнитного поля изгибались вокруг магнита от его северного полюса к его южному полюсу, отметим, что линии гравитационного поля испускаются радиально наружу во всех направлениях и просто уходят. Сила гравитационного притяжения, которое будет ощущать другой объект, – представим его орбитальным спутником, – на данном расстоянии пропорциональна плотности линий поля в данной точке. Чем больше линий поля пройдет сквозь спутник, как на Рис. 13.4b, тем большему гравитационному притяжению он подвергнется.
Теперь мы можем объяснить оригинальный закон обратного квадрата Ньютона. Воображаемая сфера с центром в Солнце и проходящая через местоположение спутника, как на Рис. 13.4с, имеет площадь поверхности, которая – подобно площади поверхности любой сферы в трехмерном пространстве – пропорциональна квадрату ее радиуса, что в этом случае есть квадрат расстояния между Солнцем и спутником. Это значит, что плотность линий поля, проходящих через сферу, – полное число линий поля, деленное на площадь сферы, – уменьшается как квадрат расстояния между Солнцем и спутником.
(а) (b) (c)
Если вы удвоите расстояние, то же самое число линий поля теперь будет однородно распределено по сфере со в четыре раза большей площадью, а потому гравитационное притяжение на этом расстоянии будет меньше в четыре раза. Закон обратного квадрата Ньютона для гравитации является, таким образом, отражением геометрического свойства сферы в трехмерном пространстве.