В отличие от этого, если вселенная имела бы два или даже просто одно пространственное измерение, как бы изменилась формула Ньютона? Ну, на Рис 13.5а показана двумерная версия Солнца и его орбитального спутника. Как вы можете видеть, при любом данном расстоянии линии гравитационного поля Солнца однородно распределены по окружности, аналогу сферы с измерениями на одно меньше. Поскольку длина окружности пропорциональна ее радиусу (а не квадрату ее радиуса), если вы удвоите расстояние между солнцем и спутником, плотность линий поля уменьшится на фактор 2 (а не 4) , так что сила гравитационного притяжения спутника солнцем упадет только в 2 раза (а не в 4). Если вселенная имеет только два пространственных измерения, тогда гравитационное притяжение будет обратно пропорционально расстоянию, а не квадрату расстояния.
Если вселенная имеет только одно измерение, как на Рис. 13.5b, закон притяжения будет еще проще. Линии гравитационного поляне не имеют пространства, чтобы рассеиваться, так что сила гравитации не будет уменьшаться с расстоянием. Если вы удвоите расстояние между Солнцем и спутником (предполагая, что аналоги таких объектов могут существовать в такой вселенной), одно и то же число линий поля будет пересекать спутник, а потому сила гравитационного воздействия между ними не будет изменяться совсем.
Хотя это невозможно нарисовать, примеры, проиллюстрированные на Рис. 13.4 и 13.5, непосредственно распространяются на вселенную с четырьмя, или пятью, или шестью или любым числом пространственных измерений. Чем больше пространственных измерений имеется, тем больше пространства имеют гравитационные силовые линии, чтобы рассеяться. А чем больше они рассеиваются, тем более чувствительно сила притяжения падает с увеличением расстояния. В четырех пространственных измерениях закон Ньютона будет законом обратного куба (удвоение расстояния приводит к падению силы в 8 раз); в пяти пространственных измерениях это будет закон обратной четвертой степени (удвоение расстояния приводит к падению силы в 16 раз); в шести измерениях это будет закон обратной пятой степени (удвоение расстояния приводит к падению силы в 32 раза); и так далее для все более многомерных вселенных.
Вы можете подумать, что успех закона обратного квадрата Ньютона в объяснении огромного количества данных – от движения планет до траекторий комет – подтверждает, что мы живем во вселенной с точно тремя пространственными измерениями. Но это заключение будет поспешным. Мы знаем, что закон обратного квадрата работает на астрономических масштабах,[6]
и мы знаем, что он работает на земных масштабах, и что это хорошо стыкуется с фактом, что на таких масштабах мы видим три пространственных измерения. Но знаем ли мы, что он работает на малых расстояниях? Как далеко в микрокосмосе проверен гравитационный закон обратного квадрата? Как оказывается, экспериментаторы подтвердили его только примерно до одной десятой миллиметра; если два объекта разделены расстоянием в одну десятую миллиметра, данные подтверждают, что сила их гравитационного притяжения следует предсказанию закона обратных квадратов. Но пока оказалось большой технической проблемой протестировать закон обратного квадрата на более мелких масштабах (квантовые эффекты и слабость гравитации усложняют эксперименты). Это критическая проблема, поскольку отклонение от закона обратного квадрата будет убедительным сигналом о дополнительных размерностях.