Возьмем слова: о, ор, вор, ворот, кол, олово, коловорот, и упорядочим их по вхождению одних слов в другие (не забывая, что каждое слово входит в само себя). Это будет наша первая решетка.
Можно убедиться, что здесь выполняются все свойства частичного порядка. А о дополнительных свойствах поговорим позже.
Числа: 1, 2, 3, 4, 6, 9, 12, 18, 36 с отношением делить нацело, так же образуют решетку.
Обычные действительные числа с отношением «больше или равно» дают одну из самых распространенных решеток. Хотя для нас она менее экзотическая. Можно сказать, простая как бревно…
Множество всех подмножеств какого-то множества с отношением включения также дает решетку, причем, с рядом замечательных свойств.
Для определения решетки договоримся называть элемент
Если, далее, возьмем множество студентов потока и наведем в нем частичный порядок. Имеется в виду не «всеми доступными средствами», а лишь отношением «учится лучше (или одинаково)», считая, что ради такого дела можно для любых двух студентов решить, который лучше… Из этого множества выделим группу ух-005 и найдем студентов потока, которые учатся лучше всех студентов группы ух-005. То есть найдем на потоке студентов, «наибольших» для этой группы. Таких студентов может оказаться несколько, если только «наибольший» студент группы не является одновременно наибольшим элементом всего потока. Такое множество наибольших элементов называется множеством
Для множества чисел 1, 2, 3, 4, 6, 9, 12, 18, 36 с отношением делить, возьмем подмножество чисел 3, 6, 9. Для него множество мажорант будет 12, 36. Множество минорант – 3, 1. супремум – 12, инфимум – 3.
Решетки, которые получаются как множества подмножеств данного конечного множества, с отношением включения, относятся к
Определить решетку можно и «алгебраически». Если для элементов множества с отношением частичного порядка (частично-упорядоченным множеством) выполняются законы коммутативный, ассоциативный, поглощения и идемпотентности, то такое частично-упорядоченное множество называется решеткой.
Если, кроме того, выполняется дистрибутивный закон – то решетка называется дистрибутивной.
Тут уж поверьте на слово – с помощью решеток решен ряд важных проблем. В том числе и теоретического программирования.
Лекция 6. МАТЕМАТИЧЕСКАЯ ЛОГИКА (БЕССМЫСЛЕННАЯ ЛОГИКА)
Обычно, настоящие математики не приспособлены к жизни. Посмотрите на них, если имеете возможность. Они где-то витают… Казалось бы, следует сделать исключение для логиков. Хотя бы потому, что поступки логиков должны быть наиболее логичны. Как бы не так! Все как раз наоборот! На самом-то деле логика строго оговаривает свои «правила игры» и действует пунктуально до беспощадности, граничащей с идиотизмом, в рамках этих правил. При этом их логика с «логикой жизни» имеет не больше общего, чем вы найдете общего в шахматной и Бородинской битвах… Но все-таки есть что-то похожее… Когда страсти с обеих противоборствующих сторон накаляются и дело доходит до рукопашной!…