Несогласные себя называют
Согласным же ничего не осталось, как назвать самих себя
Лекция 4. СООТВЕТСТВИЯ, ОТОБРАЖЕНИЯ, ОТНОШЕНИЯ
Алгеброй далеко не исчерпывается все то, что можно сделать с множествами…
В математике, как и в жизни, различные об'екты могут чему-то соответствовать или не соответствовать. Находиться меж собой в определенных отношениях или наоборот – не находится. И основой формализации, если угодно – математизации, здесь также служат множества.
То есть между множествами могут устанавливаться различные
Человек может соответствовать профессии, зарплата соответствовать должности, наказание – преступлению, оценка – знаниям.
Глядя на многочисленные примеры вокруг мы замечаем, что для определения конкретного соответствия надо определить два множества: множество (область) определения и множество (область) значений. А также определить «пары соответствий». Например, область определения – группа ух-005, сдающая экзамен; область значений – отл, хор, уд, неуд – множество оценок. И множество пар Иванов – отл, Петров – хор, Сидоров – отл. А Хведоров – не явился. Вот вам и готовое соответствие.
Соответствия обладают свойствами.
1. В данном случае соответствие
2. Соответствие
Если бы за один экзамен студенты могли получать несколько оценок, то соответствие было бы
3. Данное соответствие
4. Данное соответствие
5. Соответствие, которое одновременно
Выделение соответствий в отдельную категорию предложили европейцы, а точнее французы, а еще точнее, Николя Бурбаки (это французский Козьма Прутков, состоявший из математиков интеллектуалов). Американская школа считает соответствия частным случаем отношений. А у нас разговор про отношения отдельный – так легче разложить все по полочкам. Так что пришла пора поговорить об отношениях.
В математике, как и в жизни, различные об'екты могут иметь какое-то отношение к другим об'ектам или не иметь.
Родственные отношения, дружеские отношения, дипломатические отношения, равноправные отношения.
Глядя на многочисленные примеры вокруг, мы замечаем, что отношения отличаются от соответствий тем, что определяются на одном множестве. Бессмысленно бы было говорить об отношениях между студентами и оценками. О дипломатических, родственных или любых других отношениях между должностью и зарплатой. Для определения конкретного отношения надо определить множество, и пары, для которых имеет место данное отношение.