Каждое конкретное отношение обладает сразу совокупностью свойств. Полезно исследовать группы отношений, у которых совокупности свойств одинаковые.
Прежде всего к таковым относятся отношения
Интересно, что каждый об'ект эквивалентен сам себе хотя бы потому, что для самого невероятного об'екта, который ни на что не похож, по отношении к самому себе выполняются рефлексивность, симметричность и транзитивность. Обычно же об'екты не столь уникальны и имеют место множества (любят говорить
Самое важное свойство отношения эквивалентности (то есть свойство отношения, которое само определено с помощью трех вышеупомянутых свойств) покажем на примере. Если взять первозданный хаос, то есть все множество студентов университета, которые болтаются по коридорам, сидят в буфете или в аудиториях, а еще лучше дома или вообще неизвестно где, то отношение «учиться в одной группе»
В качестве лабораторной работы по разбиению рекомендуется разбить тарелку. Желательно, из китайского фарфора. А потом созерцать осколки, каждый из которых будет для фарфоринок классом эквивалентности применительно к отношению «принадлежать одному и тому же осколку»… Это лучше, чем разбивать группы, тем более, что ортодоксальные алгебраисты под «группой» понимают не кучу студентов, а нечто фундаментальное математическое… Но это уже начало другой романтической истории про молоденького французского гения и (увы) дуэлянта – Эвариста Галуа.
Заметную роль в математике играют и отношения
Примеры. «Быть больше» на множестве чисел, «быть после» в очереди, «быть старше по званию» в армии.
Дополнительно, если порядки обладают свойством полноты, то их называют
Если отношение еще и рефлексивно, то порядок называют
Отрадно то, что теоретико-множественные отношения порядка как правило совпадают с житейским представлением об упорядочении. Но не всегда. Знаменитое отношение «быть братом» с одной стороны очень похоже на отношение порядка. Иван брат Марьи, но Марья не брат Петра – вроде(
Более интересными являются другие отношения, очень похожие на отношения порядка. Например, «быть немного выше ростом». Это антисимметричное, но нетранзитивное отношение. Иван немного выше ростом Петра, Петро немного выше ростом Егора. Но Иван намного выше ростом Егора. Отношения, похожие на отношения порядка, но не обладающие свойством транзитивности, называют отношениями
Отношения частичного порядка, то есть рефлексивные, антисимметричные и транзитивные, на которые накладывают ряд дополнительных свойств, изучаются в рамках раздела математики с экзотическим названием
Можно предположить, что название «решетки» возникло в связи с использованием так называемых диаграмм Хассе, которые может и напоминают экстравагантные решетки для окон… Но мы договорились без формул, а тем более без рисунков. Рисунки, в отличие от формул, народ любит. Но рисовать картинки в Ворде еще противнее, чем формулы, поэтому постараемся, насколько, конечно, возможно, компенсировать и их красноречием…
Начнем с примеров решеток.