Читаем Эффективное использование STL полностью

InputIterator end, OutputIterator destBegin. Predicate p)

{

while begin!=end) { f(p(*begin)) *destBegn++ = *begin; ++begin;

}

return destBegn;

}

Поскольку алгоритм copy_if чрезвычайно полезен, а неопытные программисты STL часто полагают, что он входит в библиотеку, можно порекомендовать разместить реализацию copy_if — правильную реализацию! — в локальной вспомогательной библиотеке и использовать ее в случае надобности.

Совет 37. Используйте accumulate или for_each для обобщения интервальных данных

Иногда возникает необходимость свести целый интервал к одному числу или, в более общем случае, к одному объекту. Для стандартных задач обобщения существуют специальные алгоритмы. Так, алгоритм count возвращает количество элементов в интервале, а алгоритм count_if возвращает количество элементов, соответствующих заданному предикату. Минимальное и максимальное значение элемента в интервале можно получить при помощи алгоритмов min_element и max_element.

Но в некоторых ситуациях возникает необходимость обработки интервальных данных по нестандартным критериям, и в таких случаях нужны более гибкие и универсальные средства, нежели алгоритмы count, count_if, min_element и max_element. Предположим, вы хотите вычислить сумму длин строк в контейнере, произведение чисел из заданного интервала, усредненные координаты точек и т. д. В каждом из этих случаев производится обобщение интервала, но при этом критерий обобщения вы должны определять самостоятельно. Для подобных ситуаций в STL предусмотрен специальный алгоритм accumulate. Многим программистам этот алгоритм незнаком, поскольку в отличие от большинства алгоритмов он не находится в , а вместе с тремя другими «числовыми алгоритмами» (inner_product, adjacent_difference и partial_sum) выделен в библиотеку .

Как и многие другие алгоритмы, accumulate существует в двух формах. Первая форма, получающая пару итераторов и начальное значение, возвращает начальное значение в сумме со значениями из интервала, определяемого итераторами:

list ld;// Создать список и заполнить

// несколькими значениями типа double.

double sum = accumulate(ld.begin(),ld.end(),0,0); // Вычислить сумму чисел

// с начальным значением 0.0

Обратите внимание: в приведенном примере начальное значение задается в форме 0.0. Эта подробность важна. Число 0.0 относится к типу double, поэтому accumulate использует для хранения вычисляемой суммы переменную типа double. Предположим, вызов выглядит следующим образом:

double sum = accumulate(ld.begin(),ld.end(),0): // Вычисление суммы чисел

// с начальным значением 0; // неправильно!

В качестве начального значения используется int 0, поэтому accumulate накапливает вычисляемое значение в переменной типа int. В итоге это значение будет возвращено алгоритмом accumulate и использовано для инициализации переменной sum. Программа компилируется и работает, но значение sum будет неправильным. Вместо настоящей суммы списка чисел типа double переменная содержит сумму всех чисел, преобразуемую к int после каждого суммирования.

Алгоритм accumulate работает только с итераторами ввода и поэтому может использоваться даже с istream_iterator и istreambuf_iterator (см. совет 29):

cout << "The sum of the ints on the standard input is " // Вывести сумму

<< accumulate(istream_iterator(cin),// чисел из входного

istream_iterator(),// потока

0);

Из-за своей первой, стандартной формы алгоритм accumulate был отнесен к числовым алгоритмам. Но существует и другая, альтернативная форма, которой при вызове передается начальное значение и произвольная обобщающая функция. В этом варианте алгоритм accumulate становится гораздо более универсальным.

В качестве примера рассмотрим возможность применения accumulate для вычисления суммы длин всех строк в контейнере. Для вычисления суммы алгоритм должен знать две вещи: начальное значение суммы (в данном случае 0) и функцию обновления суммы для каждой новой строки. Следующая функция берет предыдущее значение суммы, прибавляет к нему длину новой строки и возвращает обновленную сумму:

string::size_type // См. далее

stringLengthSum(string::size_type sumSoFar, const string& s)

{

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных