Фракталы зачастую воплощают собой незамысловатый, но парадоксальный принцип: крайне простые правила позволяют получать фантастически сложные структуры и узоры. Снежинка Коха создается по правилу, понятному даже ребенку (всего-то нужно построить равносторонний треугольник на средней трети каждого из отрезков), и тем не менее имеет очень замысловатую, хоть и регулярную структуру. Множество Мандельброта во много крат сложнее, но его рецепт опять-таки обезоруживающе прост: начинаем с функции
У фракталов есть еще одна интересная особенность. Как мы уже знаем, фрактальная размерность снежинки Коха равна 1,26, что дает нам некоторое представление о степени “шероховатости” линии или о том, насколько хорошо она заполняет плоскость. Если взять произвольную линию, пересекающую снежинку Коха, такое пересечение почти всегда само представляет собой фрактал с размерностью 0,26. (Есть несколько случаев вырождения, таких как пересечение по оси симметрии, когда получаются две изолированных точки с фрактальной размерностью 0.) Это верно для любого фрактала с размерностью от 1 до 2 включительно. Например, почти все линии, пересекающие границу множества Мандельброта, образуют фракталы с размерностью 1, хоть они и состоят из разрозненных точек и имеют длину 0.
Если проделать то же с фракталами размерностью менее 1, происходит нечто иное. Любой из таких фракталов представляет собой облако из изолированных точек. Пример – пыль Фату. Удивительно, но почти все прямые, которые пересекают пыль Фату, имеют с ней лишь одну общую точку, образуя фрактал размерности 0, тогда как почти все прямые в целом, даже если ограничиться только теми, что проходят через пыль Фату, с ней не пересекаются.
Все эти фракталы существуют в двумерном пространстве. Но можно найти фракталы и в одномерном пространстве: они представляют собой разрозненные облака точек и имеют размерность 1 или меньше. Самый известный пример одномерного фрактала – канторово множество. Начнем с отрезка. Удалим у него среднюю треть, оставив два крайних отрезка. Будем проделывать то же снова и снова. В конце концов от всех отрезков остаются только отдельные точки, составляющие фрактал с размерностью приблизительно 0,63.
С фракталами тесно связано еще одно явление в математике, называемое хаосом. И то и другое задается итерированными функциями, то есть набором циклически применяющихся правил. На каждом этапе состояние, возникшее в результате предыдущей итерации, используется в качестве аргумента той же функции для получения следующего состояния. В случае с фракталами итерации приводят к возникновению повторяющихся или почти повторяющихся узоров, которым нет конца, сколько бы мы ни увеличивали масштаб. Отличительными чертами хаоса являются сложность, в которой отсутствуют какие бы то ни было повторяющиеся узоры, и крайняя чувствительность к изменениям начальных условий, или начального состояния системы.
Само слово “хаос” имеет греческое происхождение и исходно означало “разверстую бездну”, “беспредельное пространство”. В классическом и мифологическом представлении о сотворении мира хаосом называли бесформенное состояние, из которого возникла вселенная. В математике и физике хаос, или хаотическое состояние, равнозначен случайности или отсутствию упорядоченности. Но в теории хаоса речь о другом. Она описывает поведение нелинейных динамических систем при определенных условиях. Знакомый нам пример – капризы погоды. Сегодня мы легко можем предсказывать погоду на ближайшее время – на пару дней или неделю, и в большинстве случаев правильно. Но достоверно спрогнозировать погоду на более долгий срок – скажем, на месяц – невозможно. И причина тому – хаос.