Одна из наиболее интересных и парадоксальных черт фракталов – их размерность. Слово “размерность” обычно вызывает две ассоциации: первая – это размеры какого-либо объекта, вторая – некое направление в пространстве, одно из измерений, о которых мы говорили во второй главе. Мы говорим о кубе, что он имеет размерность 3, поскольку его грани лежат в плоскостях, простирающихся в трех разных направлениях под прямыми углами друг к другу. Это второе, интуитивное, понимание размерности – количество перпендикулярных направлений, в которых можно передвигаться, – приблизительно соответствует тому, что в математике называется топологической размерностью. Сфера имеет топологическую размерность 2, потому что мы можем передвигаться по ней в направлениях, обозначаемых как север и юг или восток и запад. А вот шар имеет топологическую размерность 3, поскольку у него также есть направления “вверх” и “вниз”, где “вниз” – это к центру шара, а “вверх” – от центра, как у нас на Земле. Топологическая размерность может быть даже 4 и больше, как мы видели во второй главе (например, тессеракт имеет топологическую размерность 4), но она всегда выражается целым числом. С фракталами, однако, дело обстоит по-другому. Фрактальная размерность показывает, грубо говоря, насколько хорошо кривая заполняет плоскость или насколько хорошо поверхность заполняет пространство.
Первый, второй и четвертый этапы построения кривой Коха.
Снежинка Коха.
Есть много разных видов фрактальной размерности. Одна из наиболее легких для понимания – размерность Минковского, еще ее можно назвать “клеточной” (
Большинство привычных нам фигур имеет размерность, выражаемую целым числом – 1, 2 или 3. С фракталами все по-другому. Возьмем, к примеру, снежинку Коха. Чтобы было проще, воспользуемся тем, что каждый составляющий ее элемент – кривая Коха – состоит, в свою очередь, из четырех кривых Коха меньшего размера. Если мы в три раза уменьшим сторону клетки в нашей измерительной сетке, то сможем разделить кривую Коха на четыре ее уменьшенных копии, каждая из которых будет в три раза меньше исходной. Каждая из уменьшенных копий перекрывается таким же количеством маленьких клеток, как было вначале с исходной кривой и большими клетками, – то есть общее число клеток увеличилось в четыре раза. Это позволяет нам рассчитать размерность кривой Коха
Если применить клеточный метод к салфетке Серпинского, мы получим значение