Темп, с которым растет результат математического действия при добавлении новых стрелок, просто ошеломляет: если 3 × 3 = 9, то 3↑3 дает 27, а 3↑↑3 уже больше 7,6 триллиона (13-значное число). Результат тетрации числа 4 еще поразительнее: 4↑↑4 = 4↑4↑4↑4 = 4↑4↑256, что приблизительно равно 10↑10↑154 – то есть больше гуголплекса (10↑10↑100). Перевалить за это огромное число нам удалось с помощью всего-то одной четверки и нескольких простых значков.
Но раз мы сделали такой гигантский шаг, перейдя от простого возведения в степень к тетрации, то, наверное, если добавить еще одну стрелку, можно получить что-то еще более впечатляющее? Что ж, интуиция нас не обманывает. При повторной тетрации, называемой пентацией, результат вырастает так, что аж дух захватывает! Ничем не примечательная запись 3↑↑↑3 – это то же, что 3↑↑3↑↑3, что, в свою очередь, равно 3↑↑7 625 597 484 987, или 3↑3↑3↑3…↑3, – а это уже степенная башня высотой в 7 625 597 484 987 троек. Если башни в 4 этажа достаточно, чтобы получить число, превышающее гуголплекс, только представьте себе, что получится в этом случае. Это невообразимо большое число: человеческой жизни не хватит, чтобы записать его даже в виде степенной башни
. В напечатанном виде такая башня дотянется до самого Солнца. Это число, известное как “тритри”, значительно больше любого из тех, что мы упоминали до сих пор; осмыслить его нам, простым смертным, почти невозможно. А ведь мы еще только начали. Тритри, при всей своей величине, – ничтожная песчинка рядом с величественным пиком, который представляет собой число Грэма. Добавив еще одну стрелку, получим 3↑↑↑↑3 = 3↑↑↑3↑↑↑3 = 3↑↑↑тритри. Давайте разберемся, что это значит. В нагромождении степенных башен самая первая у нас 3; вторая – 3↑3↑3, или 7 625 597 484 987; третья – 3↑3↑3↑3…↑3 c 7 625 597 484 987 тройками, то есть тритри; четвертая – 3↑3↑3↑3…↑3, где тритри троек; и так далее. 3↑↑↑↑3 – это башня под номером тритри. Добавив к трем стрелкам еще одну, мы шагнули на гигантское расстояние, так далеко, что уму непостижимо. А пришли всего лишь к g1 – самому первому из серии чисел g, необходимых для того, чтобы добраться до вершины, то есть до самого числа Грэма. После передышки в базовом лагере g1 продолжаем подъем до следующего лагеря, g2. Помните, что, добавляя в запись числа всего одну стрелку, мы каждый раз увеличиваем его на чудовищную величину. Теперь внимание! Число g2 – это 3↑↑↑↑…↑3 с количеством стрелок, равным g1. Даже робкая попытка осмыслить его масштаб, понять, насколько грандиозными могут быть числа, вызывает головокружение. Всего одна дополнительная стрелка увеличивает результат на феноменальную величину, а в числе g2 таких стрелок g1. В числе g3, как вы уже наверняка догадались, g2 стрелок, в числе g4 – g3 стрелок и так далее. А само число Грэма, G, – это g64. В 1980 году оно было занесено в “Книгу рекордов Гиннесса” как самое большое число, когда-либо использованное в математическом доказательстве.Математическую проблему, из которой родилось число Грэма, фантастически сложно решить, но довольно легко сформулировать. Связана она с многомерными кубами, то есть n
-мерными гиперкубами. Представьте, что все вершины такого куба попарно соединены друг с другом отрезками, окрашенными либо в красный, либо в синий цвет. Грэм задался следующим вопросом: каково наименьшее значение n, при котором для любого варианта окрашивания найдутся четыре вершины, лежащие в одной плоскости и попарно соединенные отрезками одного цвета? Ему удалось доказать, что нижний предел для числа n – 6, а верхний – g64. Этот колоссальный разрыв свидетельствует о сложности задачи. Грэм смог доказать, что значение n, удовлетворяющее ее условиям, существует, но для этого ему пришлось определить верхний предел n с помощью числа умопомрачительной величины. С тех пор математики сумели сократить разрыв до более скромного (по сравнению с первоначальным) диапазона значений n: от 13 до 9↑↑↑4.Число Грэма, наряду с гуголом и гуголплексом, часто приводят в качестве примера очень большого числа, имея о нем, однако, весьма смутное понятие. Во-первых, это уже далеко не самое большое из описанных чисел. Во-вторых, если уж искать новые “рекордные” числа и способы их представления и описания, то брать за основу число Грэма и увеличивать его с помощью традиционных математических операций не имеет никакого смысла.