Теперь становится ясным, почему мы не можем воспользоваться опытом с магнитной стрелкой и током (или каким-нибудь аналогичным примером магнитной асимметрии) для передачи на планету
Эксперимент, потрясший Маха, можно смоделировать следующим образом (рис. 56). По движущейся ленте транспортера бегут, выстроившись в ряд, морские свинки. Двигатель вращается так, что верхняя часть ленты движется с юга на север. Это движение соответствует движению электронов в проволоке с юга на север. Морские свинки — это электроны намагниченного железного стерженька. В сторону бежать некуда, повернуть назад трудно, поэтому естественно, что все зверьки бегут в направлении к югу. Правый конец ряда, обращенный на запад, соответствует северному полюсу магнита, а восточный конец ядра — южному полюсу.
Если взять весь ряд и развернуть его северным полюсом на север, то есть повернуть свинок на запад, то этот ряд должен будет повернуть налево, чтобы восстановить первоначальное положение. Направо морские свинки в этом случае никогда не повернут, поскольку им не понравится бежать по движущемуся транспортеру назад. Казалось бы, что можно воспользоваться этим методом для оперативного определения понятий «правый» и «левый». В действительности же этого сделать нельзя, потому что ряд морских свинок обладает билатеральной симметрией. Чтобы разъяснить планете
Мах был совершенно прав, когда интуитивно полагал, что магнитное поле симметрично! Потрясающий эксперимент в этом отношении был поставлен лишь в 1957 году, но прежде чем о нем рассказать, читателю придется еще во многом разобраться.
Если бы десять лет назад вы попросили физика найти решение проблемы Озма, то наверняка получили бы ответ: решения
Когда в природе что-нибудь остается неизменным, физики любят выражать это постоянство в форме закона сохранения. Например, закон сохранения массы-энергии утверждает, что полное количество массы-энергии в природе постоянно. Масса может переходить в энергию, и наоборот (в соответствии с известной формулой Эйнштейна
Понятие «четность» было введено впервые математиками с целью разграничения четных и нечетных чисел. Если два целых числа оба четны или нечетны, то говорят, что они имеют одинаковую четность. Если одно из них четно, а другое нет, то их четности противоположны. Оказалось, что это понятие может быть различным образом применено к любой ситуации, когда предметы явно разделяются на два взаимно исключающих класса, которые могут быть связаны с четными или нечетными числами. Рассмотрим простейший пример. Возьмем три монеты и положим их рядом на столе «орлом» кверху. Будем затем переворачивать монеты по одной в любом порядке независимо от того, какую монету переворачивали перед этим (пусть даже все время одну и ту же монету). Если общее число переворачиваний монет