Нетрудно видеть, что любая симметричная система в трехмерном пространстве при обращении знака любой из координат не изменяется. О таких системах будем говорить, что они имеют положительную четность. Асимметричные же системы при таком преобразовании переходят в свои зеркальные изображения, иными словами, обладают отрицательной четностью. Три координаты, каждая из которых может быть как положительной, так и отрицательной, могут быть сопоставлены с тремя монетами, каждая из которых имеет два положения: «орел» или «решка». Если некоторая система асимметрична, то любое
В двадцатых годах было установлено, что эти математические понятия могут быть с успехом применены в физике, а именно — связаны с волновыми функциями, описывающими элементарные частицы. Каждая такая функция зависит от пространственных координат
Теоретические соображения (такие, как лево-правая симметрия самого пространства), как и эксперименты с атомными и субатомными частицами, указывают на то, что в любой изолированной системе четность всегда сохраняется. Пусть, например, частица с положительной (+1) четностью распадается на две частицы. Эти две новые частицы могут иметь либо обе положительную, либо обе отрицательную четность. В обоих случаях сумма четностей положительна, поскольку и сумма двух четных чисел, и сумма двух нечетных чисел всегда четны. То же утверждение можно выразить иначе:
Не следует забывать, что мы имеем дело уже не с простыми геометрическими фигурами в трехмерном пространстве, а со сложными абстрактными формулами квантовой механики. Здесь не представляется возможным вдаваться в детали точного смысла сохранения четности в квантовой теории и рассматривать множество причин, по которым это утверждение оказывается ценной концепцией. К счастью, смысл этой идеи легко доступен пониманию. В 1927 году Е. Вигнер, венгерский физик, работающий в Принстонском университете, смог показать, что сохранение четности целиком покоится на том факте, что все силы, участвующие во взаимодействии элементарных частиц, свободны от какой-либо лево-правой несимметрии[42]
. Иными словами, любое нарушение четности было бы эквивалентно нарушению зеркальной симметрии в основных законах, описывающих структуру и взаимодействие частиц. Физики давно уже знали, что зеркальная симметрия господствует в макромире вращающихся планет и соударяющихся бильярдных шаров. Сохранение четности предполагает, что эта зеркальная симметрия распространяется и до атомного и субатомного уровней. Природа, по-видимому, нигде не дает предпочтения одной из сторон (правой или левой).Это не означает, что в природе нет асимметрии вообще, а говорит лишь за то, что все, что в природе почему-либо происходит влево, с таким же успехом может осуществляться и вправо. Например, наша Земля при вращении вокруг движущегося относительно звезд Солнца совершает движение по определенным образом ориентированной спирали. Здесь мы имеем конкретный пример асимметрии в астрономии. Но эта асимметрия не более, чем случайность в развитии Галактики. Другие планеты при вращении вокруг своих солнц, безусловно, имеют орбиты, закрученные в противоположную сторону.