Читаем Этот правый, левый мир полностью

Нетрудно видеть, что любая симметричная система в трехмерном пространстве при обращении знака любой из координат не изменяется. О таких системах будем говорить, что они имеют положительную четность. Асимметричные же системы при таком преобразовании переходят в свои зеркальные изображения, иными словами, обладают отрицательной четностью. Три координаты, каждая из которых может быть как положительной, так и отрицательной, могут быть сопоставлены с тремя монетами, каждая из которых имеет два положения: «орел» или «решка». Если некоторая система асимметрична, то любое нечетное

число перемен знаков координат приводит к тому же результату, что и одно изменение, а именно оно переводит систему в ее зеркальное отображение. Так будет, если, например, изменить знаки у всех трех координат, поскольку число 3 нечетное. Каждое отдельное изменение знака координаты эквивалентно отображению в зеркале, но если зеркальное изображение снова отобразить в зеркале, то мы получим то, с чего начинали. Значит, любое четное число изменений знаков координат оставляет систему неизменной относительно «левого» и «правого». (Вот почему два зеркала, о которых говорилось в гл. 3, дают не перевернутое изображение: они меняют направление двух
осей координатной системы.) Всякое же нечетное число изменений знака переводит систему в ее зеркальное изображение. Конечно, если система симметрична (то есть имеет положительную четность), то любое число изменений знака — четное или нечетное — не приводит к изменению системы.

В двадцатых годах было установлено, что эти математические понятия могут быть с успехом применены в физике, а именно — связаны с волновыми функциями, описывающими элементарные частицы. Каждая такая функция зависит от пространственных координат х, у, z.

Если изменение знака одной (или всех трех) координаты оставляет функцию неизменной, то такой функции приписывается положительная четность; такой функции приписывается квантовое число +1. О функции, которая меняет знак при изменении одной (или всех трех) координаты, говорят, что ее четность отрицательна, и она характеризуется квантовым числом −1.

Теоретические соображения (такие, как лево-правая симметрия самого пространства), как и эксперименты с атомными и субатомными частицами, указывают на то, что в любой изолированной системе четность всегда сохраняется. Пусть, например, частица с положительной (+1) четностью распадается на две частицы. Эти две новые частицы могут иметь либо обе положительную, либо обе отрицательную четность. В обоих случаях сумма четностей положительна, поскольку и сумма двух четных чисел, и сумма двух нечетных чисел всегда четны. То же утверждение можно выразить иначе: произведение

четностей равно +1 [(+1)×(+1) = (−1)×(−1) = +1]. Конечное состояние системы имеет четность +1. Четность сохраняется. В случае распада четной частицы на две — одну тоже четную, другую нечетную — полная четность конечного состояния была бы отрицательной, то есть четность не сохранялась бы.

Не следует забывать, что мы имеем дело уже не с простыми геометрическими фигурами в трехмерном пространстве, а со сложными абстрактными формулами квантовой механики. Здесь не представляется возможным вдаваться в детали точного смысла сохранения четности в квантовой теории и рассматривать множество причин, по которым это утверждение оказывается ценной концепцией. К счастью, смысл этой идеи легко доступен пониманию. В 1927 году Е. Вигнер, венгерский физик, работающий в Принстонском университете, смог показать, что сохранение четности целиком покоится на том факте, что все силы, участвующие во взаимодействии элементарных частиц, свободны от какой-либо лево-правой несимметрии[42]. Иными словами, любое нарушение четности было бы эквивалентно нарушению зеркальной симметрии в основных законах, описывающих структуру и взаимодействие частиц. Физики давно уже знали, что зеркальная симметрия господствует в макромире вращающихся планет и соударяющихся бильярдных шаров. Сохранение четности предполагает, что эта зеркальная симметрия распространяется и до атомного и субатомного уровней. Природа, по-видимому, нигде не дает предпочтения одной из сторон (правой или левой).

Это не означает, что в природе нет асимметрии вообще, а говорит лишь за то, что все, что в природе почему-либо происходит влево, с таким же успехом может осуществляться и вправо. Например, наша Земля при вращении вокруг движущегося относительно звезд Солнца совершает движение по определенным образом ориентированной спирали. Здесь мы имеем конкретный пример асимметрии в астрономии. Но эта асимметрия не более, чем случайность в развитии Галактики. Другие планеты при вращении вокруг своих солнц, безусловно, имеют орбиты, закрученные в противоположную сторону.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука