Читаем Этот правый, левый мир полностью

Опять положим наши монеты «орлом» кверху. Сделаем теперь нечетное число переворачиваний, снова каждый раз выбирая монету независимо от того, какая бралась в предыдущий раз. Можно убедиться, что в итоге всегда получится один из четырех вариантов, изображенных на следующем рисунке (стр. 195).

Про первый набор комбинаций можно сказать, что он имеет положительную четность; про второй — отрицательную. Эксперимент показывает, что четность комбинации сохраняется при любом четном числе переворачиваний. Если вы начнете с четной комбинации и произведете, скажем, десять переворачиваний, то конечная комбинация, очевидно, будет четной. Если же вы возьмете нечетную комбинацию и затем снова перевернете монеты десять раз, вы, безусловно, получите в итоге нечетный набор. Напротив, любая комбинация изменит свою четность, если в ней производится нечетное число переворачиваний.

Многие фокусы с картами, монетами и другими предметами основаны именно на этом. Предложите, например, кому-нибудь разложить на столе десять монет.

После этого отвернитесь и командуйте вашему партнеру, чтобы он один раз (на каждую вашу команду) переворачивал любую монету. Вы можете прекратить фокус в любой момент, когда этого захочет ваш партнер, повернуться к нему и угадать, как лежит накрытая его рукой монета. Это делается с помощью простого применения того, что математики называют «проверкой на четность». Перед тем как отвернуться, сосчитайте число «орлов» и запомните, четное оно или нечетное. Если ваш партнер переворачивал монеты четное число раз, то, как вы знаете, четность числа «орлов» должна остаться той же; нечетное же число переворачиваний меняет четность. Поэтому повернувшись и быстро сосчитав число «орлов», вы сразу сможете понять, как лежит спрятанная монета. Видоизмените фокус: предложите партнеру накрыть рукой не одну, а две монеты и после аналогичным образом «угадайте», одинаково они лежат или нет.

Упражнение 14. Поставьте шесть стаканов в ряд: три вверх дном, а три обычным образом. Возьмите в каждую руку по стакану и одновременно переверните их. (Если стакан стоял вверх дном, то теперь он станет нормально, и наоборот.) Проделайте то же самое с любой другой парой. Можете продолжать так сколько угодно. Можно ли добиться, чтобы все стаканы стояли одинаково — нормально или вверх дном? Как подтвердить ответ математически?

Понятие четности может быть применено к вращающимся телам в трехмерном пространстве следующим образом. Рассмотрим вращающийся цилиндр, показанный сплошными линиями на рис. 57. Положение точек на этом цилиндре может быть определено относительно координатной системы трех взаимно перпендикулярных осей, обозначенных, как обычно, буквами х, у, z. Местонахождение любой точки на цилиндре определяется тремя числами. Первое дает измеренное вдоль оси х расстояние от данной точки до плоскости, проходящей через начало координат перпендикулярно этой оси. Второе число есть аналогичная величина, измеренная вдоль оси у

; третье — вдоль оси z.

Рис. 57. Вращающийся цилиндр имеет положительную четность.

Рис. 58. Вращающийся конус имеет отрицательную четность.

Цилиндр, нарисованный пунктирными линиями, есть тело, которое образуется, если во всех тройках чисел (координатах) х, у, z

заменить z на —z. Заметим, что при вращении верхнего цилиндра в направлении, показанном стрелками, точка А движется к А'.
Положение точек А и А' на нижнем цилиндре указывает, что он вращается в том же направлении. При выполнении преобразования нижний цилиндр был перевернут относительно верхнего, но, поскольку верхний и нижний его торцы неразличимы, оба цилиндра (и направления их вращения) совершенно идентичны.

Рассмотрим теперь вращающийся конус, показанный сплошными линиями на рис. 58. Внизу изображен конус, образующийся при замене всех координат z на —z. Идентичны ли два тела? Нет, они являются зеркальными отображениями друг друга. Если поставить верхний конус основанием вниз и совместить его с нижним, то обнаружится, что направления вращения конусов стали противоположными; если же сохранять направления вращения одинаковыми, то придется оставить конусы вершинами навстречу друг другу.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука