Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2pdsinq)/l будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, что­бы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.


Фиг. 30.6. Иллюстрация крите­рия Рэлея. Максимум одного распределения совпа­дает с минимумом другого.

Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея, (фиг. 30.6). По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.


Чтобы возник максимум при длине волны l', расстояние D (см. фиг. 30.3) должно быть равно nl', а чтобы возник мак­симум порядка m, расстояние D должно быть равно mnl'. Дру­гими словами, (2pd/l'), sinq=2pm и ndsinq, равное D, естьl

', умноженная на тп, или соответственно mnl'. Если мы хотим, чтобы под тем же углом для другого луча с длиной волны l, появился минимум, расстояние D должно превышать тпl ровно на одну длину волны l, т. е. D=тпl+l =тпl'. Отсюда, полагая l
'= l+dl,, получаем

(30.9)

Отношение l/dl, называется разрешающей способностью диф­ракционной решетки; она равна, как видно из формулы, пол­ному числу линий в решетке, умноженному на порядок макси­мума луча. Легко убедиться, что эта формула эквивалентна сле­дующему утверждению: разность частот должна быть равна обратной величине разности времен прохождения для самых крайних интерферирующих лучей

sv=1/T

Полезно запомнить именно эту общую формулу, потому что она применима не только для решеток, но и для любых устройств, тогда как вывод формулы (30.9) связан со свойствами дифрак­ционных решеток.

§ 4. Параболическая антенна

Рассмотрим теперь еще один вопрос, связанный с разреша­ющей способностью. Речь идет об антеннах радиотелескопов, использующихся для определения положения источников ра­диоволн на небе и их угловых размеров. Если бы мы взяли нашу старую антенну и с ее помощью приняли сигналы, то, конечно, не могли бы сказать, откуда они пришли. А знать, где находится источник, очень важно. Можно, конечно, покрыть всю Австра­лию проводами-диполями, расположенными на равном расстоя­нии друг от друга. Затем подсоединить все диполи к одному приемнику так, чтобы уравнять запаздывание сигналов в сое­динительных проводах. Тогда сигналы от всех диполей придут к приемнику с одной фазой. Что в результате получится? Если источник расположен достаточно далеко и прямо над нашей си­стемой, то сигналы от всех антенн придут к приемнику в фазе.

Но предположим, что источник расположен под небольшим углом 9 к вертикали. Тогда сигналы, принятые различными антеннами, будут немного сдвинуты по фазе. В приемнике все эти сигналы с разными фазами складываются, и мы ничего не получим, если только угол 6 достаточно велик. Но как велик должен быть этот угол? Ответ: мы получим нуль, если угол D/L=0 (см. фиг. 30.3) соответствует сдвигу фаз в 360°, т. е. если D равно длине волны l.

Этот результат легко понять, если учесть, что векторы, со­ответствующие сигналам от разных антенн, образуют замкну­тый многоугольник и их сумма тогда обращается в нуль. Наи­меньший угол, который антенное устройство длиной L еще может разрешить, есть Q=l/L. Заметим, что кривая чувствительности антенны при приеме имеет точно такой же вид, как и распреде­ление интенсивности, даваемое антеннами-передатчиками. Здесь проявляется так называемый принцип обратимости. Согласно этому принципу, для любых антенных устройств, при любых углах и т. п. справедливо правило: относительная чувствитель­ность в разных направлениях совпадает с относительной интен­сивностью для тех же направлений, если заменить приемник передатчиком.

Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги