Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1раз. Частота колебаний света v = с/l при длине волны 6000 Е составляет 1015 гц,

а, следовательно, время жизни, т. е. время, за которое энер­гия уменьшится в Не раз, есть величина порядка 10-8сек.

Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электро­нами, и тогда возникает добавочное сопротивление и затухание будет другим.

Величина эффективного сопротивления у, определяющая сопротивление осциллятора, может быть найдена из соотноше­ния 1/Q=g/wo; вспомним, что именно y определяет ширину резо­нансной кривой (см. фиг. 23.2) . Итак, мы вычислили шири­ны спектральных линий для свободно излучающих атомов! Из равенства l=2pc/w получаем

§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассея­нию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1 и S2 с амплитудами поля a1 и A2 . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами j1 и j2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки на­блюдения).

Наблюдаемая интенсивность излучения получается сложе­нием двух комплексных векторов с модулями a1

и A2 и фазами j1 и j2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна


Если бы не было перекрестного члена 2A1A2cos(j1

-j2), пол­ная энергия в данном направлении была бы равна сумме энер­гий A12+A22; излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источ­ников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет ин­терференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника нахо­дятся друг от друга на расстоянии 7 000 000 000 длин волн, что, в общем, вполне осуществимо. Тогда в некотором фиксиро­ванном направлении разность фаз принимает вполне определен­ное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в ма­ленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меня­ется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеб­лются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоян­ной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источ­ники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опере­жении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измере­ниях в течение больших промежутков времени приборы не смо­гут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.

Другими словами, при усреднении по разности фаз интерфе­ренционный член обращается в нуль!

Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги