Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

Интересно узнать, из-за чего возникает радиационное сопро­тивление. Возьмем простой пример: пусть ток по антенне течет попеременно вверх и вниз. Если сообщить заряженному телу ускоренное движение вверх и вниз, то оно начнет излучать (не­заряженное тело при этом энергию не излучает). Раз антенна из­лучает энергию, мы должны совершать над ней работу. Но одно дело показать с помощью закона сохранения энергии, что энер­гия теряется, и совсем другое — ответить на вопрос: против какой силы мы совершаем работу? Это очень интересный и труд­ный вопрос, на который применительно к электронам так и не удалось дать полного и удовлетворительного ответа. Однако в случае антенн ответ был найден. Вот что происходит в антеннах: поля, создаваемые движущимися электронами в одной части антенны, воздействуют на электроны в другой части. Можно вы­числить действующие силы и найти производимую ими работу, а отсюда получить формулу для радиационного сопротивления. Было бы неправильно утверждать: «Мы можем вычислить», потому что мы еще не изучили законы электричества на малых расстояниях и знаем, каково электрическое поле только на больших расстояниях. Хотя мы привели формулу (28.3), мы еще не можем ею воспользоваться для вычисления поля внутри волновой зоны, потому что эта формула для нас слитком слож­на. Правда, с помощью закона сохранения энергии мы можем получить результат и не зная вида поля на малых расстояниях. (Обращая ход рассуждений, можно найти взаимодействие на малых расстояниях, если известен вид поля на больших расстоя­ниях и если затем воспользоваться законом сохранения энергии; мы, однако, не будем сейчас заниматься этим вопросом.)

Пусть теперь имеется один-единственный электрон; к чему приложена возникающая в нем сила сопротивления? Старая классическая теория представляла электрон в виде маленького шарика, различные части которого взаимодействуют друг с другом. В результате запаздывания при распространении взаи­модействия внутри этого шарика сила оказывается несколько смещенной по фазе относительно скорости движения. Мы знаем, что, когда электрон покоится, «действие равно противодейст­вию». Поэтому внутренние силы уравновешиваются и результирующая сила равна нулю. Но в ускоренном электроне сила, дей­ствующая на переднюю половинку со стороны задней, из-за запаздывания не равна силе, действующей в обратном направ­лении. Запаздывание взаимодействия во времени нарушает баланс сил, и в результате вся система как бы «наступает сама себе на шнурки». Такое объяснение возникновения радиацион­ного сопротивления у движущегося электрона встретилось со многими трудностями и, прежде всего потому, что по совре­менным представлениям электрон вовсе не «маленький шарик»; проблема так и осталась нерешенной по сей день. Тем не менее, даже не зная механизма действия сил, мы можем точно вычис­лить силу сопротивления излучения, т. е. затраты энергии на ускорение заряда.

§ 2. Интенсивность излучения

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного уско­рения, считая, однако, движение нерелятивистским. Когда уско­рение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздыва­ющего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию e0cE2, проходящую через единичную площадку за 1 сек.

Величина e0c часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна 1/e0с =377 ом. Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.


С помощью формулы (29.1) для электрического поля мы по­лучаем

(32.2)

где S — мощность на 1 м2, излучаемая под углом q. Как уже отмечалось, S обратно пропорционально расстоянию. Интегри­руя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим S на площадь по­лоски сферы, тогда мы получим поток энергии в интервале угла dq (фиг. 32.1). Площадь полоски вычисляется следующим обра­зом: если радиус равен r, то толщина полоски равна rdq, а длина 2prsinq, поскольку радиус кольцевой полоски есть rsinq. Таким образом, площадь полоски равна

(32.3)



Фиг. 32.1. Площадь кольца на сфере, равная 2nrsinQrdQ.


Умножая поток [мощность на 1 м

2, согласно формуле (32.2)] на площадь полоски, найдем энергию, излучаемую в интер­вале углов q и q+dq; далее нужно проинтегрировать по всем углам q от 0 до 180°:

(32.4)


Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги