Единственный способ получить улучшенное поведение теории в ультрафиолетовой области состоит в том, чтобы иметь больше симметрии, встроенной в теорию. Таким образом, обобщения или модификации общей теории относительности для того, чтобы улучшить квантовое поведение теории, основываются главным образом на дополнительных симметриях. Один из популярных подходов называется ”супергравитацией” (см., например, [vanN 81]). Этот подход основан на симметрии между бозонными и фермионными полями и называется ”суперсимметрией”. Когда суперсимметричная теория калибруется таким образом, что эта суперсимметрия становится локальной (различные преобразования суперсимметрии разрешаются в каждой точке пространства-времени), калибровочная инвариантность с необходимостью включает в себя Принцип Общей Ковариантности и, следовательно, гравитацию. По существу, каждое бозонное поле имеет суперсимметричного фермионного партнёра и обратно. Ультрафиолетовое поведение теории улучшается, поскольку часто обычный расходящийся бозонный (фермионный) вклад от петель сокращается фермионным (бозонным) вкладом суперпартнера. Другими словами, суперсимметрия строго ограничивает типы контрчленов, которые могут быть порождены. К сожалению, когда размерность пространства-времени равна 4, имеются ещё потенциальные контрчлены (начиная с
В настоящее время наиболее многообещающим кандидатом теории квантовой гравитации является струнная теория. Струнная теория есть квантовая теория, в которой составной частью являются одномерные протяжённые объекты (как противопоставление точечным частицам в обычной квантовой теории поля), см., например, [GSW 87], [Hatf 92]). Если струнная теория используется для того, чтобы унифицировать все фундаментальный силы (т.е. это ”теория всего”), тогда основная идея состоит в том, что вещество делается из очень маленьких струн, чей размер порядка длины Планка. На обычных энергетических масштабах такие струны будут неразрешимы и неотличимы от точек. Унификация достигается в том, что все частицы, которые мы находим, являются только возбуждениями одной и той же струны. Одна мода осцилляций струны является безмассовой со спином, равным 2, и может идентифицироваться как гравитон, отсюда следует, что струнная теория с необходимостью содержит квантовую гравитацию. Такое возбуждение в струнной теории проистекает из открытия того, что существуют пертурбативные решения, которые математически самосогласованы или свободны от аномалий, и оказываются
Интуитивно улучшенное ультрафиолетовое поведение струнной теории возникает потому, что струнная теория включает в себя гигантскую симметрию (модулярную инвариантность). Теория струн модифицирует гравитацию точечной частицы на малом расстоянии путём обмена состояниями массивной струны, что подобно тому, как теория электрослабого взаимодействия улучшает ультрарелятивистское поведение старой 4-фермионной теории слабого взаимодействия путём замены 4 - фермионной вершины с заменой массивных калибровочных бозонов W
± и Z. Константа связи в старой теории Ферми обладает отрицательной величиной массы, и эта теория неперенормируема. Калибровочная теория электрослабого взаимодействия заменяет эту связь безразмерными константами связи, связанными с обменом бозоном, и теория становится перенормируемой. Струнная теория также вводит новую константу связи, натяжение струны T, которое в обычных единицах эквивалентно обратному квадрату длины L=ch/T. Напомним, что единственный масштаб длины, который может быть построен с помощью гравитационной постоянной G, h и скоростью света c, это планковский масштаб LP=Gh/c^3. Естественный выбор единиц для струны делает скорость света и натяжение струны безразмерными, c=1 и T=1/. В этих единицах (исключая h из приведённых выше выражений для L и L(P), гравитационная константа будет безразмерной, G=(L(P)/L)^2.Одним любопытным свойством теории струн, которое сильно отличает её от теории точечных частиц, состоит в том, что размерность пространства-времени не является внутреннем свойством самой теории. На самом деле, размерность пространства-времени есть свойство частного решения. Свободные от аномалий решения при N=1 мировом листе суперсимметрии могут быть найдены при размерности пространства-времени D меньшей или равной, чем так называемая критическая размерность D
c, которая равна быть может 10.