Читаем Feynmann 3a полностью

Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от z (т). Чему равно время за­паздывания? Обозначим время наблюдения через t (это время в точке наблюдения Р), тогда время т, которое в точке А соот­ветствует времени t, не будет совпадать с t, а отстает от него на промежуток времени, необходимый свету, чтобы пройти все рас­стояние от заряда до точки наблюдения. В первом приближении время запаздывания равно R0/c, т. е. постоянной (что неинте­ресно), а в следующем приближении должно зависеть от z-координаты положения заряда в момент t, потому что для заряда q, сдвинутого немного назад, запаздывание увеличивается. Этим эффектом мы раньше пренебрегали, если теперь учесть его, то мы получим формулу, пригодную для любых скоростей. Нам остается выбрать определенное значение t, вычислить с его помощью т и найти х и у в момент времени t. Запаздываю­щие значения х и у обозначим через х' и y', вторые производные от них определяют

поле.

Итак, t определяется из уравнений

(34.4)

Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качествен­но почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало мате­матических сложностей.

§ 2. Определение «кажущегося» движения


Написанное выше уравнение можно упростить довольно инте­ресным способом. Опустим неинтересный для нас постоянный член R0/c (это означает только, что мы изменяем начало отсчета времени t на постоянный отрезок) и запишем

(34.5)

Нам нужно найти х' и у' как функции t, а не т, и это достигается следующим образом: как подсказывает уравнение (34.5), нужно взять истинное движение заряда и добавить время т, умножен­ное на константу (скорость света). На фиг. 34.2 показано, что это означает. Возьмем истинную траекторию заряда (показанную слева) и представим себе, что по мере движения заряд удаляется от точки Р со скоростью с (здесь нет каких-либо релятивистских сокращений и подобных вещей; это просто математическое до­бавление ст). Таким путем получится новая траектория, где по оси абсцисс отложено ct, как показано на рисунке справа. (На рисунке изображена траектория довольно сложного движения в плоскости, но движение может происходить не только в плокости.)


Фиг. 34.2. Геометрический способ определения x'(t) из уравнения (34.5.).

Смысл приведенной процедуры состоит в том, что гори­зонтальное расстояние в правой части фиг. 34.2 в отличие от левой оказывается равным не z, a z+cт, т. е. ct. Мы нашли, таким образом, график изменения х' (и у') в зависимости от t\ Осталось только определить ускорение на кривой, т. е. продиф­ференцировать ее дважды. Отсюда окончательно заключаем: чтобы найти электрическое поле движущегося заряда, нужно взять траекторию движения и заставить двигаться каждую ее точку от точки наблюдения со скоростью с; полученная кривая дает положения х' и у' как функцию t. Ускорение на этой кривой определит электрическое поле в зависимости от t. Можно, если угодно, представить себе, что вся эта «твердая» кривая дви­жется вперед со скоростью с сквозь плоскость зрения, так что точка пересечения с плоскостью зрения имеет координаты х' и у'. Ускорение этой точки и определит электрическое поле! Полученное решение будет не менее точно, чем формула, из ко­торой мы исходили,— это просто ее геометрическое представ­ление.

Если источник совершает относительно медленное движение, как, например, медленно колеблющийся вверх и вниз осцилля­тор, то при растягивании этого движения со скоростью света получится простая синусоидальная кривая. Отсюда можно получить формулу для поля, создаваемого осциллирующим заря­дом, которую мы видели неоднократно.

Более интересный пример — это электрон, движущийся по окружности со скоростью, близкой к скорости света. Если на­блюдатель находится в плоскости движения электрона, запазды­вающее движение x'(t) имеет для него вид, изображенный на фиг. 34.3. Что это за кривая? Если мы представим себе радиус-вектор, проведенный из центра окружности к заряду, и если мы продолжим эти радиальные линии чуть-чуть за заряд (совсем капельку, если заряд движется быстро), то мы придем к точке, которая движется со скоростью света с. Поэтому результирую­щее движение есть движение заряда, прикрепленного к ко­лесу, которое катится назад (без скольжения) со скоростью с;


Фиг. 34.3. Кривая зависимости х' (

t) для частицы, вращающейся по окружности с постоянной скоростью v = 0,94c.

это дает нам кривую, очень похожую на циклоиду, называется она гипоциклоидой.

Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература