Читаем Feynmann 6a полностью

Для высоких частот импеданс чисто мнимый, в полном согласии с нашим прежним утвержде­нием. Для низких же частот импеданс — чистое сопротивление и поэтому поглощает энергию. Но как может цепь, подобно со­противлению, непрерывно поглощать энергию, если она состав­лена только из индуктивностей и емкостей? Ответ состоит в том, что этих емкостей и самоиндукций бесконечное множество, и получается, что, когда источник соединен с цепью, он обязан сперва снабдить энергией первую индуктивность и емкость, за­тем вторую, третью и т. д. В цепях подобного рода энергия непрерывно и с постоянной скоростью отсасывается из генера­тора и безостановочно течет в цепь. Энергия запасается в индуктивностях и емкостях вдоль цепи.

Эта идея подсказывает интересную мысль 0 том, что факти­чески происходит внутри цепи. Следует ожидать, что если к переднему концу цепи подключить источник, то действие этого источника начнет распространяться вдоль по цепи к бесконечно­му концу. Распространение волн вдоль линии очень похоже на излучение от антенны, которая отбирает энергию от питающего ее источника; точнее, можно ожидать, что такое распростране­ние происходит, когда импеданс действителен, т. е. когда co меньше Ц4/LC. Но когда импеданс чисто мнимый, т. е. при co, больших Ц4/LC, то такого распространения ожидать не следует.

§ 7. Фильтры

В предыдущем параграфе мы видели, что бесконечная лест­ничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения Ц4/LC, называемого граничной часто­той w0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при w >w0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.

Пусть передний конец лестницы соединен с каким-то гене­ратором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что слу­чается, когда мы переходим от n-го звена к (n+1)-му. Токи In и напряжения Vn мы определим так, как показано на фиг. 22.21,а.


Фиг. 22.21. Нахождение фактора распространения лестницы.

Напряжение Vn+1

можно получить из Vn, если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z0; и тогда достаточно проана­лизировать только схему фиг. 22.21, б. Мы прежде всего заме­чаем, что каждое Vn, поскольку это напряжение на зажимах сопротивлеиия z0, должно быть равно Inz0. Кроме того, разность между Vn и V
n+l равна просто Inz1:


Получается отношение


которое можно назвать фактором распространения для одного звена лестницы; обозначим его a. Для всех звеньев


(22.29)

и напряжение за nзвеном равно

Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению e на 754-ю степень a.

Как выглядит a для лестницы LС на фиг. 22.20, а? Взяв z0 из уравнения (22.27) и г1 =iwL, получим


Если частота на входе ниже граничной частоты w0

=Ц4/LС, то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение a по модулю равно единице; можно написать

а это означает, что величина (модуль) напряжения в каждом звене одна и та же; меняется только фаза. Она меняется на число d; оно на самом деле отрицательно и представляет собой «задерж­ку» напряжения по мере того, как последнее проходит по сети. А для частот выше граничной частоты w0 лучше вынести в числителе и знаменателе (22.31) множитель i и переписать его в


(22.32)

Теперь фактор распространения a — число действительное, притом меньшее единицы. Это означает, что напряжение в неко­тором звене всегда меньше напряжения в предыдущем звене; множитель пропорциональности равен а. При частотах выше w0 напряжение быстро спадает по мере движения вдоль сети. Кри­вая модуля a как функции частоты похожа на график, приведен­ный на фиг. 22.22.

Мы видим, что поведение а как выше, так и ниже w0 согласу­ется с нашим представлением о том, что сеть передает энергию при w0 и задерживает ее при w>w0. Говорят, что сеть «про­пускает» низкие частоты и «отбрасывает», или «отфильтровыва­ет», высокие. Всякая сеть, устроенная так, чтобы ее характе­ристики менялись указанным образом, называется «фильтром». Мы проанализировали «фильтр низкого пропускания», или «низ­ких частот».

Перейти на страницу:

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука